Nejvíce citovaný článek - PubMed ID 15860214
Cell microarrays on photochemically modified polytetrafluoroethylene
The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar(+) plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.
- MeSH
- aorta cytologie účinky léků MeSH
- biokompatibilní materiály chemie farmakologie MeSH
- buněčná adheze účinky léků MeSH
- glycin chemie farmakologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- myocyty hladké svaloviny cytologie účinky léků MeSH
- polyethylen chemie farmakologie MeSH
- polyethylenglykoly chemie farmakologie MeSH
- povrchové vlastnosti MeSH
- proliferace buněk účinky léků MeSH
- sérový albumin hovězí chemie farmakologie MeSH
- svaly hladké cévní cytologie účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- glycin MeSH
- polyethylen MeSH
- polyethylenglykoly MeSH
- sérový albumin hovězí MeSH
Surface of polyethyleneterephthalate (PET) was modified by plasma discharge and subsequently grafted with dithiols (1, 2-ethanedithiol (ED) or 4, 4'-biphenyldithiol) to create the thiol (-SH) groups on polymer surface. This "short" dithiols are expected to be fixed via one of -SH groups to radicals created by the plasma treatment on the PET surface. "Free" -SH groups are allowed to interact with Au nanoparticles. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrokinetic analysis (EA, zeta potential) were used for the characterization of surface chemistry of the modified PET. Surface morphology and roughness of the modified PET were studied by atomic force microscopy (AFM). The results from XPS, FTIR, EA and AFM show that the Au nanoparticles are grafted on the modified surface only in the case of biphenyldithiol pretreatment. The possible explanation is that the "flexible" molecule of ethanedithiol is bounded to the activated PET surface with both -SH groups. On the contrary, the "rigid" molecule of biphenyldithiol is bounded via only one -SH group to the modified PET surface and the second one remains "free" for the consecutive chemical reaction with Au nanoparticle. The gold nanoparticles are distributed relatively homogenously over the polymer surface.
- Publikační typ
- časopisecké články MeSH
High-density polyethylene (PE) foils were modified by an Ar(+) plasma discharge and subsequent grafting with biomolecules, namely glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C) or BSA and C (BSA + C). As revealed by atomic force microscopy (AFM), goniometry and Rutherford Backscattering Spectroscopy (RBS), the surface chemical structure and surface morphology of PE changed dramatically after plasma treatment. The contact angle decreased for the samples treated by plasma, mainly in relation to the formation of oxygen structures during plasma irradiation. A further decrease in the contact angle was obvious after glycine and PEG grafting. The increase in oxygen concentration after glycine and PEG grafting proved that the two molecules were chemically linked to the plasma-activated surface. Plasma treatment led to ablation of the PE surface layer, thus the surface morphology was changed and the surface roughness was increased. The materials were then seeded with vascular smooth muscle cells (VSMC) derived from rat aorta and incubated in a DMEM medium with fetal bovine serum. Generally, the cells adhered and grew better on modified rather than on unmodified PE samples. Immunofluorescence showed that focal adhesion plaques containing talin, vinculin and paxillin were most apparent in cells on PE grafted with PEG or BSA + C, and the fibres containing alpha-actin, beta-actin or SM1 and SM2 myosins were thicker, more numerous and more brightly stained in the cells on all modified PE samples than on pristine PE. An enzyme-linked immunosorbent assay (ELISA) revealed increased concentrations of focal adhesion proteins talin and vinculin and also a cytoskeletal protein beta-actin in cells on PE modified with BSA + C. A contractile protein alpha-actin was increased in cells on PE grafted with PEG or Gly. These results showed that PE activated with plasma and subsequently grafted with bioactive molecules and colloidal C particles, especially with PEG and BSA + C, promotes the adhesion, proliferation and phenotypic maturation of VSMC.
- Klíčová slova
- bioactivity, biocompatibility, plasma irradiation, tissue engineering and reconstruction,
- MeSH
- aktiny metabolismus MeSH
- aorta cytologie MeSH
- buněčná adheze účinky léků MeSH
- glycin farmakologie MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- kyslík metabolismus MeSH
- mikroskopie atomárních sil MeSH
- polyethylen chemie farmakologie MeSH
- polyethylenglykoly chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- sérový albumin hovězí farmakologie MeSH
- skot MeSH
- svaly hladké cévní cytologie účinky léků metabolismus MeSH
- uhlík chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- glycin MeSH
- kyslík MeSH
- polyethylen MeSH
- polyethylenglykoly MeSH
- sérový albumin hovězí MeSH
- uhlík MeSH