Nejvíce citovaný článek - PubMed ID 16118427
Yeast fluorescence microscopy
Actin filaments form cortical patches and emanating cables in fermenting cells of Saccharomyces cerevisiae. This pattern has been shown to be depolarized in glucose-depleted cells after formaldehyde fixation and staining with rhodamine-tagged phalloidin. Loss of actin cables in mother cells was remarkable. Here we extend our knowledge on actin in live glucose-depleted cells co-expressing the marker of actin patches (Abp1-RFP) with the marker of actin cables (Abp140-GFP). Glucose depletion resulted in appearance of actin patches also in mother cells. However, even after 80 min of glucose deprivation these cells showed a clear network of actin cables labeled with Abp140-GFP in contrast to previously published data. In live cells with a mitochondrial dysfunction (rho0 cells), glucose depletion resulted in almost immediate appearance of Abp140-GFP foci partially overlapping with Abp1-RFP patches in mother cells. Residual actin cables were clustered in patch-associated bundles. A similar overlapping "patchy" pattern of both actin markers was observed upon treatment of glucose-deprived rho+ cells with FCCP (the inhibitor of oxidative phosphorylation) and upon treatment with formaldehyde. While the formaldehyde-targeted process stays unknown, our results indicate that published data on yeast actin cytoskeleton obtained from glucose-depleted cells after fixation should be considered with caution.
- Klíčová slova
- Abp1-RFP, Abp140-GFP, Actin cables, Actin patches, yeast,
- Publikační typ
- časopisecké články MeSH
Strains of Saccharomyces cerevisiae lacking Isw2, the catalytic subunit of the Isw2 chromatin remodeling complex, show the mating type-independent activation of the cell wall integrity (CWI) signaling pathway. Since the CWI pathway activation usually reflects cell wall defects, we searched for the cell wall-related genes changed in expression. The genes DSE1, CTS1, and CHS1 were upregulated as a result of the absence of Isw2, according to previously published gene expression profiles (I. Frydlova, M. Basler, P. Vasicova, I. Malcova, and J. Hasek, Curr. Genet. 52:87-95, 2007). Western blot analyses of double deletion mutants, however, did not indicate the contribution of the chitin metabolism-related genes CTS1 and CHS1 to the CWI pathway activation. Nevertheless, the deletion of the DSE1 gene encoding a daughter cell-specific protein with unknown function suppressed CWI pathway activation in isw2Delta cells. In addition, the deletion of DSE1 also abolished the budding-within-the-birth-scar phenotype of isw2Delta cells. The plasmid-driven overexpression proved that the deregulation of Dse1 synthesis was also responsible for CWI pathway activation and manifestation of the budding-within-the-birth-scar phenotype in wild-type cells. The overproduced Dse1-green fluorescent protein localized to both sides of the septum and persisted in unbudded cells. Although the exact cellular role of this daughter cell-specific protein has to be elucidated, our data point to the involvement of Dse1 in bud site selection in haploid cells.
The Schizosaccharomyces pombe eIF3a ortholog (SpeIF3a) was shown to be unable to substitute for S. cerevisiae eIF3a (SceIF3a) in its essential function in the initiation of translation. Overproduction of SpeIF3a altered the distribution of SceIF3a but formation of the endogenous eIF3 complex was not affected. SpeIF3a was found to be more tightly bound to S. cerevisiae ribosomes than SceIF3a and other eIF3 subunits (eIF3g, eIF3i, eIF3j). The host cells displayed aberrant morphology and altered chitin deposition. SpeIF3a probably competes with SceIF3a for binding to either ribosomes or yet to be identified substrates.
- MeSH
- cytoplazma chemie MeSH
- delece genu MeSH
- eukaryotický iniciační faktor 3 genetika fyziologie MeSH
- fluorescenční mikroskopie MeSH
- klonování DNA MeSH
- konfokální mikroskopie MeSH
- proteosyntéza genetika MeSH
- ribozomy metabolismus MeSH
- Saccharomyces cerevisiae genetika růst a vývoj fyziologie MeSH
- Schizosaccharomyces pombe - proteiny genetika fyziologie MeSH
- Schizosaccharomyces genetika MeSH
- testy genetické komplementace MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- Schizosaccharomyces pombe - proteiny MeSH