Nejvíce citovaný článek - PubMed ID 16278860
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques.
Due to its nanostructure, bacterial nanocellulose (BC) has several advantages over plant cellulose, but it exhibits weak cell adhesion. To overcome this drawback, we studied the drying method of BC and subsequent argon plasma modification (PM). BC hydrogels were prepared using the Komagataeibacter sucrofermentans (ATCC 700178) bacteria strain. The hydrogels were transformed into solid samples via air-drying (BC-AD) or lyophilization (BC-L). The sample surfaces were then modified by argon plasma. SEM revealed that compared to BC-AD, the BC-L samples maintained their nanostructure and had higher porosity. After PM, the contact angle decreased while the porosity increased. XPS showed that the O/C ratio was higher after PM. The cell culture experiments revealed that the initial adhesion of human keratinocytes (HaCaT) was supported better on BC-L, while the subsequent growth of these cells and final cell population density were higher on BC-AD. The PM improved the final colonization of both BC-L and BC-AD with HaCaT, leading to formation of continuous cell layers. Our work indicates that the surface modification of BC renders this material highly promising for skin tissue engineering and wound healing.
- Klíčová slova
- bacterial nanocellulose, cell adhesion, lyophilization, plasma modification,
- Publikační typ
- časopisecké články MeSH