Nejvíce citovaný článek - PubMed ID 16408984
Chain mechanism in the photocleavage of phenacyl and pyridacyl esters in the presence of hydrogen donors
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- fotolýza MeSH
- molekulární struktura MeSH
- organické látky chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- organické látky MeSH
A broadly based investigation of the effects of a diverse array of substituents on the photochemical rearrangement of p-hydroxyphenacyl esters has demonstrated that common substituents such as F, MeO, CN, CO2R, CONH2, and CH3 have little effect on the rate and quantum efficiencies for the photo-Favorskii rearrangement and the release of the acid leaving group or on the lifetimes of the reactive triplet state. A decrease in the quantum yields across all substituents was observed for the release and rearrangement when the photolyses were carried out in buffered aqueous media at pHs that exceeded the ground-state pKa of the chromophore where the conjugate base is the predominant form. Otherwise, substituents have only a very modest effect on the photoreaction of these robust chromophores.
- Klíčová slova
- pH, pKa, photorelease, solvent effects, substituent,
- Publikační typ
- časopisecké články MeSH