Nejvíce citovaný článek - PubMed ID 16590310
Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.
- MeSH
- Bacillus subtilis genetika MeSH
- bakteriální proteiny genetika MeSH
- ligasy genetika MeSH
- reakce na tepelný šok genetika MeSH
- regulace genové exprese u bakterií genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- guanosine 3',5'-polyphosphate synthetases MeSH Prohlížeč
- ligasy MeSH
A two-dimensional electrophoretic method was used to show that protein degradation occurs immediately after the end of exponential growth but that its occurrence is masked in the usual assay methods for a 2-h period and that degradation is apparently nonselective with respect to protein molar mass or charge. The results suggest that considerable reutilization of internal amino acids may occur during sporulation regardless of the size of the external chase. Finally, the levels of intracellular proteinase activities present even at the end of exponential phase growth, as measured in vitro, are sufficient to account for the maximum rates of protein degradation observed in vivo.
- MeSH
- Bacillus subtilis enzymologie metabolismus fyziologie MeSH
- bakteriální proteiny analýza biosyntéza metabolismus MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- endopeptidasy metabolismus MeSH
- isoelektrická fokusace MeSH
- koncentrace vodíkových iontů MeSH
- leucin analýza metabolismus MeSH
- matematika MeSH
- molekulová hmotnost MeSH
- spory bakteriální MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- bakteriální proteiny MeSH
- endopeptidasy MeSH
- leucin MeSH
- MeSH
- Bacillus subtilis genetika MeSH
- bakteriální transformace * MeSH
- DNA virů metabolismus MeSH
- mutace MeSH
- plazmidy MeSH
- protoplasty metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA virů MeSH
NaN3 was found to inhibit transformation but not the irreversible binding of donor 3H-DNA in competent cells of the original low-transformable strain Bacillus subtilis 168 trp2. Addition of NaN3 to cells of two mutants Bacillus subtilis HT39 and HT46 with an increased transformability decreased substantially the irreversible binding of the donor DNA to the competent cells. The decreased irreversible binding of DNA is caused by an increased osmotic sensitivity of competent cells of the mutants HT39 and HT46 in the presence of NaN3, leading preferentially to lysis of the competent cells.
- MeSH
- azidy farmakologie MeSH
- Bacillus subtilis genetika metabolismus MeSH
- bakteriální transformace účinky léků MeSH
- DNA bakterií metabolismus MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azidy MeSH
- DNA bakterií MeSH
Glucosamine added to a transformation medium (TM2) after a 30-min cultivation of cells exhibited the highest inhibitory effect on the transformation process in Bacillus subtilis 168 trp2. The recipient culture was least sensitive to glucosamine added after 50 min. Glucosamine had no inhibitory effect when added 10 min after the transformation DNA.
- MeSH
- Bacillus subtilis * metabolismus MeSH
- časové faktory MeSH
- DNA bakterií metabolismus MeSH
- glukosa metabolismus MeSH
- glukosamin farmakologie MeSH
- mutace MeSH
- stereoizomerie MeSH
- transformace genetická účinky léků MeSH
- tryptofan biosyntéza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- glukosa MeSH
- glukosamin MeSH
- tryptofan MeSH
- MeSH
- antibiotická rezistence * MeSH
- azacytidin farmakologie MeSH
- Bacillus subtilis účinky léků růst a vývoj izolace a purifikace MeSH
- cytidin farmakologie MeSH
- DNA bakterií MeSH
- kultivační média MeSH
- mutace * MeSH
- transformace genetická MeSH
- triaziny farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azacytidin MeSH
- cytidin MeSH
- DNA bakterií MeSH
- kultivační média MeSH
- triaziny MeSH
- MeSH
- amylasy metabolismus MeSH
- antibakteriální látky biosyntéza MeSH
- Bacillus subtilis enzymologie metabolismus MeSH
- deoxyribonukleasy metabolismus MeSH
- muramidasa metabolismus MeSH
- mutace * MeSH
- proteasy metabolismus MeSH
- ribonukleasy metabolismus MeSH
- spory * MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amylasy MeSH
- antibakteriální látky MeSH
- deoxyribonukleasy MeSH
- muramidasa MeSH
- proteasy MeSH
- ribonukleasy MeSH