Nejvíce citovaný článek - PubMed ID 16970183
Recent applications of conductivity detection in capillary and chip electrophoresis
Two methods of capillary electrophoresis with contactless conductivity detection have been developed for monitoring the levels of glucose and lactate in clinical samples. The separations are performed in uncoated fused silica capillaries with inner diameter 10 or 20 μm, total length 31.5 cm, length to detector 18 cm, using an Agilent electrophoretic instrument with an integrated contactless conductivity detector. Glucose is determined in optimized background electrolyte, 50 mM NaOH with pH 12.6 and 2-deoxyglucose is used as an internal standard; the determination of lactate is performed in 40 mM CHES/NaOH with pH 9.4 and lithium cations as an internal standard. Both substances are determined in minimal volumes of (1) nutrient media after cell incubation, and (2) microdialysates of human adipose tissue; after dilution and filtration as the only treatment of the sample. The migration time of glucose is 2.5 min and that of lactate is 1.5 min with detection limits at the micromolar concentration level. The developed techniques are suitable for sequential monitoring of glucose and lactate over time during metabolic experiments.
- Klíčová slova
- Capillary electrophoresis, Cell incubation, Contactless conductivity detection, Glucose, Lactate, Microdialysis, Rapid determination,
- MeSH
- elektrická vodivost * MeSH
- elektroforéza kapilární metody MeSH
- glukosa analýza MeSH
- kalibrace MeSH
- kultivační média chemie MeSH
- kultivované buňky MeSH
- kyselina mléčná analýza MeSH
- lidé MeSH
- mikrodialýza metody MeSH
- tuková tkáň MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukosa MeSH
- kultivační média MeSH
- kyselina mléčná MeSH
The paper provides a critical discussion of the present state of the theory of high-frequency impedance sensors (now mostly called contactless impedance or conductivity sensors), the principal approaches employed in designing impedance flow-through cells and their operational parameters. In addition to characterization of traditional types of impedance sensors, the article is concerned with the use of less common sensors, such as cells with wire electrodes or planar cells. There is a detailed discussion of the effect of the individual operational parameters (width and shape of the electrodes, detection gap, frequency and amplitude of the input signal) on the response of the detector. The most important problems to be resolved in coupling these devices with flow-through measurements in the liquid phase are also discussed. Examples are given of cell designs for continuous flow and flow-injection analyses and of detection systems for miniaturized liquid chromatography and capillary electrophoresis. New directions for the use of these sensors in molecular biology and chemical reactors and some directions for future development are outlined.
The article brings a comprehensive survey of recent developments and applications of high-performance capillary electromigration methods, zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography, to analysis, preparation, and physicochemical characterization of peptides. New approaches to the theoretical description and experimental verification of electromigration behavior of peptides and to methodology of their separations, such as sample preparation, adsorption suppression, and detection, are presented. Novel developments in individual CE and CEC modes are shown and several types of their applications to peptide analysis are presented: conventional qualitative and quantitative analysis, purity control, determination in biomatrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid and sequence analysis, and peptide mapping of proteins. Some examples of micropreparative peptide separations are given and capabilities of CE and CEC techniques to provide important physicochemical characteristics of peptides are demonstrated.