Most cited article - PubMed ID 17004658
Immunomodulatory effects of Bacillus firmus on mouse peritoneal cells in vitro
Mucosal immunization with non-living antigens usually requires the use of an adjuvant. The adjuvant activity of Bacillus firmus in the mucosal immunization of mice was described by our laboratory previously. In the present study, subcellular localization of B. firmus activities was followed. After mechanical disintegration, subcellular components of bacterium were fractionated by differential centrifugation and salting out. Bacterial cell walls, cytoplasmic membrane fraction, soluble cytoplasmic proteins, and ribosomal fractions were isolated. Their effect on the mouse immune system was studied. Lymphocyte proliferation and immunoglobulin formation in vitro were stimulated by bacterial cell wall (BCW), cytoplasmic membrane (CMF), and ribosomal fractions. BCW and CMF increased antibody formation after intratracheal immunization of mice with influenza A and B viruses, and increased protection against subsequent infection with influenza virus. The BCW fraction even induced intersubtypic cross-protection: Mice immunized with A/California/7/04 (H3N2) + BCW were resistant to the infection by the highly pathogenic A/PR/8/34 (H1N1) virus.
- MeSH
- Adjuvants, Immunologic administration & dosage isolation & purification MeSH
- Bacillus chemistry MeSH
- Orthomyxoviridae Infections prevention & control MeSH
- Cells, Cultured MeSH
- Lymphocytes drug effects MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Cell Proliferation drug effects MeSH
- Antibody Formation drug effects MeSH
- Influenza Vaccines administration & dosage MeSH
- Influenza A virus immunology MeSH
- Influenza B virus immunology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adjuvants, Immunologic MeSH
- Influenza Vaccines MeSH
Twelve lactobacilli isolates from mucosa of 3-5-week-old weaned pigs were found to exert good antimicrobial activity against common porcine pathogens (S. aureus, B. cereus, E. coli, C. perfringens). Two of them produced in addition to lactic acid also considerable amounts of acetic acid, and 6 of them produced hydrogen peroxide and metabolites other than organic acids. Isolates 4/26 and 2/25 (identified as L. crispatus or L. amylovorus) were inhibitory against most strains of S. aureus, B. cereus and E. coli, and especially the strain 4/26 survived well in simulated gastric and intestinal juice. Diarrhea-causing E. coli O8K88H9 Ent(+) was successfully inhibited by the growing culture as well as by the catalase-treated and neutralized supernatant of L. reuteri 12/26. Mucin degradation and multiple resistance to antibiotics were not observed.
- MeSH
- Drug Resistance, Microbial MeSH
- Bacillus cereus drug effects MeSH
- Clostridium perfringens drug effects MeSH
- Escherichia coli drug effects MeSH
- Feces microbiology MeSH
- Ileum microbiology MeSH
- Culture Media, Conditioned pharmacology MeSH
- Culture Media chemistry pharmacology MeSH
- Lactic Acid pharmacology MeSH
- Lactobacillus drug effects isolation & purification metabolism MeSH
- Mucins metabolism MeSH
- Swine Diseases prevention & control MeSH
- Weaning MeSH
- Hydrogen Peroxide metabolism MeSH
- Immunity, Innate MeSH
- Probiotics MeSH
- Staphylococcus aureus drug effects MeSH
- Intestinal Mucosa microbiology MeSH
- Sus scrofa microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Culture Media, Conditioned MeSH
- Culture Media MeSH
- Lactic Acid MeSH
- Mucins MeSH
- Hydrogen Peroxide MeSH