Immunomodulatory properties of subcellular fractions of a G+ bacterium, Bacillus firmus
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Adjuvants, Immunologic administration & dosage isolation & purification MeSH
- Bacillus chemistry MeSH
- Orthomyxoviridae Infections prevention & control MeSH
- Cells, Cultured MeSH
- Lymphocytes drug effects MeSH
- Disease Models, Animal MeSH
- Mice MeSH
- Cell Proliferation drug effects MeSH
- Antibody Formation drug effects MeSH
- Influenza Vaccines administration & dosage MeSH
- Influenza A virus immunology MeSH
- Influenza B virus immunology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adjuvants, Immunologic MeSH
- Influenza Vaccines MeSH
Mucosal immunization with non-living antigens usually requires the use of an adjuvant. The adjuvant activity of Bacillus firmus in the mucosal immunization of mice was described by our laboratory previously. In the present study, subcellular localization of B. firmus activities was followed. After mechanical disintegration, subcellular components of bacterium were fractionated by differential centrifugation and salting out. Bacterial cell walls, cytoplasmic membrane fraction, soluble cytoplasmic proteins, and ribosomal fractions were isolated. Their effect on the mouse immune system was studied. Lymphocyte proliferation and immunoglobulin formation in vitro were stimulated by bacterial cell wall (BCW), cytoplasmic membrane (CMF), and ribosomal fractions. BCW and CMF increased antibody formation after intratracheal immunization of mice with influenza A and B viruses, and increased protection against subsequent infection with influenza virus. The BCW fraction even induced intersubtypic cross-protection: Mice immunized with A/California/7/04 (H3N2) + BCW were resistant to the infection by the highly pathogenic A/PR/8/34 (H1N1) virus.
See more in PubMed
Vaccine. 2011 Jan 10;29(3):545-57 PubMed
Int Immunopharmacol. 2009 Jan;9(1):127-33 PubMed
Folia Microbiol (Praha). 1994;39(2):147-51 PubMed
Immunobiology. 2008;213(3-4):285-96 PubMed
Immunology. 2007 Nov;122(3):316-25 PubMed
FEMS Immunol Med Microbiol. 2008 Jul;53(2):195-203 PubMed
Methods. 2006 Feb;38(2):144-9 PubMed
Indian J Biochem Biophys. 2009 Feb;46(1):79-85 PubMed
Immunobiology. 1993 Apr;187(3-5):212-26 PubMed
J Immunol. 2002 Jan 1;168(1):51-6 PubMed
Eur J Immunol. 2007 Jun;37(6):1538-47 PubMed
Vaccine. 1994 Apr;12(5):419-26 PubMed
Folia Microbiol (Praha). 2009 Nov;54(6):549-52 PubMed
Folia Microbiol (Praha). 2002;47(2):193-7 PubMed
J Clin Invest. 2004 Sep;114(6):857-66 PubMed
Folia Microbiol (Praha). 2006;51(2):154-6 PubMed
Biochimie. 2006 Oct;88(10):1391-400 PubMed
Vaccine. 2004 Jun 2;22(17-18):2154-62 PubMed
BMC Immunol. 2010 Mar 24;11:15 PubMed
BioDrugs. 2003;17(5):355-67 PubMed
J Clin Microbiol. 1994 Mar;32(3):750-4 PubMed
Trends Genet. 1992 Oct;8(10):332-3 PubMed
Immunol Lett. 2008 Jan 29;115(2):144-52 PubMed
Immunol Lett. 2001 May 1;77(1):39-45 PubMed
Folia Microbiol (Praha). 2006;51(3):243-7 PubMed
Vaccine. 2003 Jun 20;21(21-22):2805-12 PubMed
Curr Opin Drug Discov Devel. 2003 Mar;6(2):204-17 PubMed
Infect Immun. 2008 Feb;76(2):454-65 PubMed
N Engl J Med. 2004 Feb 26;350(9):896-903 PubMed
J Exp Med. 1962 Dec 1;116:929-42 PubMed
JAMA. 1999 Jul 14;282(2):137-44 PubMed
Int J Immunopharmacol. 1998 Jul;20(7):359-68 PubMed
Mucosal Immunol. 2010 Nov;3(6):556-66 PubMed
J Immunol. 1992 Aug 1;149(3):981-8 PubMed
Scand J Immunol. 2010 Mar;71(3):159-68 PubMed
Rev Infect Dis. 1980 May-Jun;2(3):352-69 PubMed
Science. 1998 Dec 11;282(5396):2085-8 PubMed
Immunol Lett. 2010 Nov 30;134(1):26-34 PubMed
J Infect Dis. 1997 Aug;176 Suppl 1:S38-44 PubMed
BioDrugs. 2006;20(2):81-4 PubMed
Immunol Lett. 1998 Dec;64(2-3):161-6 PubMed