Nejvíce citovaný článek - PubMed ID 17124311
There is, at present, a lack of consensus regarding precisely what is meant by the term 'energy' across the sub-disciplines of neuroscience. Definitions range from deficits in the rate of glucose metabolism in consciousness research to regional changes in neuronal activity in cognitive neuroscience. In computational neuroscience virtually all models define the energy of neuronal regions as a quantity that is in a continual process of dissipation to its surroundings. This, however, is at odds with the definition of energy used across all sub-disciplines of physics: a quantity that does not change as a dynamical system evolves in time. Here, we bridge this gap between the dissipative models used in computational neuroscience and the energy-conserving models of physics using a mathematical technique first proposed in the context of fluid dynamics. We go on to derive an expression for the energy of the linear time-invariant (LTI) state space equation. We then use resting-state fMRI data obtained from the human connectome project to show that LTI energy is associated with glucose uptake metabolism. Our hope is that this work paves the way for an increased understanding of energy in the brain, from both a theoretical as well as an experimental perspective.
- Klíčová slova
- Computational neuroscience, Neural energy,
- Publikační typ
- časopisecké články MeSH
Impairment of spatial navigation (SN) skills is one of the features of the Alzheimer's disease (AD) already at the stage of mild cognitive impairment (MCI). We used a computer-based battery of spatial navigation tests to measure the SN performance in 22 MCI patients as well as 21 normal controls (NC). In order to evaluate intrinsic activity in the subcortical regions that may play a role in SN, we measured ALFF, fALFF, and ReHo derived within 14 subcortical regions. We observed reductions of intrinsic activity in MCI patients. We also demonstrated that the MCI versus NC group difference can modulate activity-behavior relationship, that is, the correlation slopes between ReHo and allocentric SN task total errors were significantly different between NC and MCI groups in the right hippocampus (interaction F = 4.44, p = 0.05), pallidum (F = 8.97, p = 0.005), and thalamus (F = 5.95, p = 0.02), which were negative in NC (right hippocampus, r = -0.49; right pallidum, r = -0.50; right thalamus, r = -0.45; all p < 0.05) but absent in MCI (right hippocampus, r = 0.21; right pallidum, r = 0.32; right thalamus r = 0.28; all p > 0.2). These findings may provide a novel insight of the brain mechanism associated with SN impairment in MCI and indicated a stage specificity of brain-behavior correlation in dementia. This trial is registered with ChiCTR-BRC-17011316.
- MeSH
- dospělí MeSH
- funkční zobrazování neurálních procesů MeSH
- globus pallidus diagnostické zobrazování patofyziologie MeSH
- hipokampus diagnostické zobrazování patofyziologie MeSH
- kognitivní dysfunkce diagnostické zobrazování patofyziologie psychologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- neuropsychologické testy MeSH
- prostorová navigace fyziologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- thalamus diagnostické zobrazování patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH