Most cited article - PubMed ID 17689055
Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes
BACKGROUND: The sun is a natural source of UV radiation. It can be divided into three bands, UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm), where the radiation up to 290 nm is very effectively eliminated by the stratospheric ozone. Although UV radiation can have a beneficial effect on our organism and can be used in the treatment of several skin diseases, it must primarily be considered harmful. METHODS: In the presented work, we focused on the study of the longer-wavelength UV components (UVA and UVB) on the human epidermal keratinocyte line HaCaT. As UVA and UVB radiation sources, we used commercially available UVA and UVB tubes from Philips (Philips, Amsterdam, The Netherlands), which are commonly employed in photochemotherapy. We compared their effects on cell viability and proliferation, changes in ROS production, mitochondrial function and the degree of DNA damage. RESULTS: Our results revealed that UVB irradiation, even with significantly lower irradiance, caused greater ROS production, depolarization of mitochondrial membrane potential and greater DNA fragmentation, along with significantly lowering cell viability and proliferative capacity. CONCLUSIONS: These results confirm that UV radiation causes severe damages in skin cells, and they need to be protected from it, or it needs to be applied more cautiously, especially if the component used is UVB.
- Keywords
- DNA damage, UV radiation, photoageing, reactive oxygen species,
- MeSH
- HaCaT Cells MeSH
- Keratinocytes * radiation effects MeSH
- Skin MeSH
- Humans MeSH
- DNA Damage MeSH
- Ultraviolet Rays * adverse effects classification MeSH
- Cell Survival MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
2,3-Dehydrosilybin (DHS) was previously shown to chelate and reduce both copper and iron ions. In this study, similar experiments with 2,3-dehydrosilychristin (DHSCH) showed that this congener of DHS also chelates and reduces both metals. Statistical analysis pointed to some differences between both compounds: in general, DHS appeared to be a more potent iron and copper chelator, and a copper reducing agent under acidic conditions, while DHSCH was a more potent copper reducing agent under neutral conditions. In the next step, both DHS and DHSCH were tested for metal-based Fenton chemistry in vitro using HPLC with coulometric detection. Neither of these compounds were able to block the iron-based Fenton reaction and, in addition, they mostly intensified hydroxyl radical production. In the copper-based Fenton reaction, the effect of DHSCH was again prooxidant or neutral, while the effect of DHS was profoundly condition-dependent. DHS was even able to attenuate the reaction under some conditions. Interestingly, both compounds were strongly protective against the copper-triggered lysis of red blood cells, with DHSCH being more potent. The results from this study indicated that, notwithstanding the prooxidative effects of both dehydroflavonolignans, their in vivo effect could be protective.
- Keywords
- copper, dehydroflavonolignans, dehydrosilybin, dehydrosilychristin, flavonolignans, hydroxyl radical, iron, milk thistle, prooxidation, silymarin,
- Publication type
- Journal Article MeSH
Silybum marianum (L.) is a medicinal plant traditionally used in treatment of liver disorders. In last decades, silymarin (SM), a standardized extract from S. marianum seeds has been studied for its dermatological application, namely for UVB-protective properties. However, information on SM and its polyphenols effect on activity of enzymes participating in the (photo)aging process is limited. Therefore, evaluation of SM and its flavonolignans potential to inhibit collagenase, elastase, and hyaluronidase in tube tests was the goal of this study. The antioxidant and UV screening properties of SM and its flavonolignans silybin, isosilybin, silydianin, silychristin and 2,3-dehydrosilybin (DHSB) were also evaluated by a DPPH assay and spectrophotometrical measurement. DHSB showed the highest ability to scavenge DPPH radical and also revealed the highest UVA protection factor (PF-UVA) that corresponds with its absorption spectrum. SM and studied flavonolignans were found to exhibit anti-collagenase and anti-elastase activity. The most potent flavonolignan was DHSB. None of studied flavonolignans or SM showed anti-hyaluronidase activity. Our results suggest that SM and its flavonolignans may be useful agents for skin protection against the harmful effects of full-spectrum solar radiation including slowing down skin (photo)aging.
- Keywords
- Silybum marianum, collagenase, elastase, sun protection factor,
- MeSH
- Antioxidants chemistry isolation & purification MeSH
- Flavonolignans chemistry isolation & purification MeSH
- Skin drug effects pathology radiation effects MeSH
- Humans MeSH
- Silybum marianum chemistry MeSH
- Plant Extracts chemistry MeSH
- Seeds chemistry MeSH
- Silymarin chemistry isolation & purification MeSH
- Ultraviolet Rays adverse effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- dehydrosilybin MeSH Browser
- Flavonolignans MeSH
- Plant Extracts MeSH
- Silymarin MeSH