Nejvíce citovaný článek - PubMed ID 17717048
Chromosomal rearrangement interferes with meiotic X chromosome inactivation
Hybrid sterility is a reproductive isolation barrier between diverging taxa securing the early steps of speciation. Hybrid sterility is ubiquitous in the animal and plant kingdoms, but its genetic control is poorly understood. In our previous studies, we have uncovered the sterility of hybrids between musculus and domesticus subspecies of the house mouse, which is controlled by the Prdm9 gene, the X-linked Hstx2 locus, and subspecific heterozygosity for genetic background. To further investigate this form of genic-driven chromosomal sterility, we constructed a simplified hybrid sterility model within the genome of the domesticus subspecies by swapping domesticus autosomes with their homologous partners from the musculus subspecies. We show that the "sterility" allelic combination of Prdm9 and Hstx2 can be activated by a musculus/domesticus heterozygosity of as few as two autosomes, Chromosome 17 (Chr 17) and Chr 18 and is further enhanced when another heterosubspecific autosomal pair is present, whereas it has no effect on meiotic progression in the pure domesticus genome. In addition, we identify a new X-linked hybrid sterility locus, Hstx3, at the centromeric end of Chr X, which modulates the incompatibility between Prdm9 and Hstx2. These results further support our concept of chromosomal hybrid sterility based on evolutionarily accumulated divergence between homologous sequences. Based on these and previous results, we believe that future studies should include more information on the mutual recognition of homologous chromosomes at or before the first meiotic prophase in interspecific hybrids, as this may serve as a general reproductive isolation checkpoint in mice and other species.
- Klíčová slova
- Mus musculus, chromosome, genomes, hybrid, meiosis, speciation,
- MeSH
- genom MeSH
- histonlysin-N-methyltransferasa * genetika MeSH
- hybridizace genetická * MeSH
- infertilita genetika MeSH
- myši MeSH
- reprodukční izolace MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histonlysin-N-methyltransferasa * MeSH
- prdm9 protein, mouse MeSH Prohlížeč
Intrinsic postzygotic isolation typically appears as reduced viability or fertility of interspecific hybrids caused by genetic incompatibilities between diverged parental genomes. Dobzhansky-Muller interactions among individual genes, and chromosomal rearrangements causing problems with chromosome synapsis and recombination in meiosis, have both long been considered as major mechanisms behind intrinsic postzygotic isolation. Recent research has, however, suggested that the genetic basis of intrinsic postzygotic isolation can be more complex and involves, for example, overall divergence of the DNA sequence or epigenetic changes. Here, we review the mechanisms of intrinsic postzygotic isolation from genic, chromosomal, genomic, and epigenetic perspectives across diverse taxa. We provide empirical evidence for these mechanisms, discuss their importance in the speciation process, and highlight questions that remain unanswered.
Hybrid sterility contributes to speciation by preventing gene flow between related taxa. Prdm9, the first and only hybrid male sterility gene known in vertebrates, predetermines the sites of recombination between homologous chromosomes and their synapsis in early meiotic prophase. The asymmetric binding of PRDM9 to heterosubspecific homologs of Mus musculus musculus × Mus musculus domesticus F1 hybrids and increase of PRDM9-independent DNA double-strand break hotspots results indificult- to- repair double-strand breaks, incomplete synapsis of homologous chromosomes, and meiotic arrest at the first meiotic prophase. Here, we show that Prdm9 behaves as a major hybrid male sterility gene in mice outside the Mus musculus musculus × Mus musculus domesticus F1 hybrids, in the genomes composed of Mus musculus castaneus and Mus musculus musculus chromosomes segregating on the Mus musculus domesticus background. The Prdm9cst/dom2 (castaneus/domesticus) allelic combination secures meiotic synapsis, testes weight, and sperm count within physiological limits, while the Prdm9msc1/dom2 (musculus/domesticus) males show a range of fertility impairment. Out of 5 quantitative trait loci contributing to the Prdm9msc1/dom2-related infertility, 4 control either meiotic synapsis or fertility phenotypes and 1 controls both, synapsis, and fertility. Whole-genome genotyping of individual chromosomes showed preferential involvement of nonrecombinant musculus chromosomes in asynapsis in accordance with the chromosomal character of hybrid male sterility. Moreover, we show that the overall asynapsis rate can be estimated solely from the genotype of individual males by scoring the effect of nonrecombinant musculus chromosomes. Prdm9-controlled hybrid male sterility represents an example of genetic architecture of hybrid male sterility consisting of genic and chromosomal components.
- Klíčová slova
- HORMAD2, SYCP3, homologous synapsis, meiosis, spermatogenesis, synaptonemal complex,
- MeSH
- chromozomy MeSH
- histonlysin-N-methyltransferasa genetika metabolismus MeSH
- meióza * genetika MeSH
- mužská infertilita * genetika MeSH
- myši MeSH
- sperma metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- prdm9 protein, mouse MeSH Prohlížeč
Changes in chromosomal structure involving chromosomal rearrangements or copy number variation of specific sequences can play an important role in speciation. Here, we explored the chromosomal structure of two hybridizing passerine species; the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia), using conventional cytogenetic approaches, immunostaining of meiotic chromosomes, fluorescence in situ hybridization as well as comparative genomic hybridization (CGH). We found that the two nightingale species show conserved karyotypes with the same diploid chromosome number of 2n = 84. In addition to standard chromosomes, both species possessed a small germline restricted chromosome of similar size as a microchromosome. Just a few subtle changes in chromosome morphology were observed between the species, suggesting that only a limited number of chromosomal rearrangements occurred after the species divergence. The interspecific CGH experiment suggested that the two nightingale species might have diverged in centromeric repetitive sequences in most macro- and microchromosomes. In addition, some chromosomes showed changes in copy number of centromeric repeats between the species. The observation of very similar karyotypes in the two nightingale species is consistent with a generally slow rate of karyotype evolution in birds. The divergence of centromeric sequences between the two species could theoretically cause meiotic drive or reduced fertility in interspecific hybrids. Nevertheless, further studies are needed to evaluate the potential role of chromosomal structural variations in nightingale speciation.
- Klíčová slova
- GRC, Luscinia, birds, centromere, chromosomal structure, comparative genomic hybridization, karyotype evolution, rDNA,
- Publikační typ
- časopisecké články MeSH
Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribution of structural variants to reproductive isolation between species-and the underlying mechanism by which structural variants most often contribute to speciation-remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation.
- Klíčová slova
- hybridization, reproductive isolation, suppressed recombination,
- MeSH
- biologická evoluce MeSH
- druhová specificita * MeSH
- fenotyp MeSH
- fyziologická adaptace MeSH
- lidé MeSH
- molekulární evoluce MeSH
- reprodukční izolace MeSH
- strukturální variace genomu genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Recent studies have shown that infertility affects estimated 15% of all couples. Male infertility is the primary or contributory cause in 60% of these cases. Consequently, the application of assisted reproduction is increasing. These methods could benefit from an extended evaluation of sperm quality. For this reason, we analyzed sperm proteins from 30 men with normal spermiograms and 30 men with asthenozoospermia. Ejaculates of both groups were tested by flow cytometry (FCM) and fluorescence with a set of well-characterized anti-human sperm Hs-monoclonal antibodies (MoAbs), which were generated in our laboratory. No statistically significant differences were found between normospermics and asthenospermics in the expression of the sperm surface protein clusterin, evaluated with Hs-3 MoAb, and semenogelin, evaluated with Hs-9 MoAb. However, FCM revealed quantitative differences in the acrosomal proteins between normozoospermic and asthenozoospermic men, namely, in glyceraldehyde-3-phosphate dehydrogenase, evaluated with Hs-8 MoAb, valosin-containing protein, evaluated with Hs-14 MoAb, and ATP synthase (cAMP-dependent protein kinase II, PRKAR2A), evaluated with MoAb Hs-36. Asthenozoospermic men displayed a highly reduced expression of intra-acrosomal proteins, with a likely decrease in sperm quality, and thus a negative impact on successful reproduction. Asthenozoospermia seems to be a complex disorder involving intra-acrosomal proteins.
- MeSH
- astenozoospermie imunologie metabolismus MeSH
- fertilizace in vitro MeSH
- intracytoplazmatické injekce spermie MeSH
- lidé MeSH
- monoklonální protilátky imunologie MeSH
- proteiny metabolismus MeSH
- průtoková cytometrie MeSH
- spermie imunologie metabolismus MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- monoklonální protilátky MeSH
- proteiny MeSH
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.
- MeSH
- chromozom X genetika MeSH
- genetické lokusy genetika MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- hybridizace genetická MeSH
- lidé MeSH
- lokus kvantitativního znaku genetika MeSH
- meióza MeSH
- mužská infertilita genetika MeSH
- myši MeSH
- párování chromozomů genetika MeSH
- reprodukční izolace MeSH
- synaptonemální komplex genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- prdm9 protein, mouse MeSH Prohlížeč
During meiosis, pairing of homologous chromosomes and their synapsis are essential prerequisites for normal male gametogenesis. Even limited autosomal asynapsis often leads to spermatogenic impairment, the mechanism of which is not fully understood. The present study was aimed at deliberately increasing the size of partial autosomal asynapsis and analysis of its impact on male meiosis. For this purpose, we studied the effect of t(12) haplotype encompassing four inversions on chromosome 17 on mouse autosomal translocation T(16;17)43H (abbreviated T43H). The T43H/T43H homozygotes were fully fertile in both sexes, while +/T43H heterozygous males, but not females, were sterile with meiotic arrest at late pachynema. Inclusion of the t(12) haplotype in trans to the T43H translocation resulted in enhanced asynapsis of the translocated autosome, ectopic phosphorylation of histone H2AX, persistence of RAD51 foci, and increased gene silencing around the translocation break. Increase was also on colocalization of unsynapsed chromatin with sex body. Remarkably, we found that transcriptional silencing of the unsynapsed autosomal chromatin precedes silencing of sex chromosomes. Based on the present knowledge, we conclude that interference of meiotic silencing of unsynapsed autosomes with meiotic sex chromosome inactivation is the most likely cause of asynapsis-related male sterility.
- MeSH
- biologické modely MeSH
- chromatin metabolismus fyziologie MeSH
- chromozomy genetika metabolismus MeSH
- genetická transkripce genetika MeSH
- hybridizace in situ fluorescenční MeSH
- meióza genetika fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- párování chromozomů genetika MeSH
- pohlavní chromozomy genetika metabolismus MeSH
- regulace genové exprese MeSH
- translokace genetická genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
BACKGROUND: Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. CONCLUSIONS/SIGNIFICANCE: The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition.
- MeSH
- antisense RNA genetika MeSH
- chromozom X genetika MeSH
- druhová specificita MeSH
- glukosa-6-fosfátdehydrogenasa genetika MeSH
- malá interferující RNA genetika MeSH
- meióza genetika MeSH
- molekulární evoluce * MeSH
- myši MeSH
- nekódující RNA genetika MeSH
- retroelementy genetika MeSH
- testis cytologie metabolismus MeSH
- transkriptom * MeSH
- umlčování genů MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antisense RNA MeSH
- glukosa-6-fosfátdehydrogenasa MeSH
- malá interferující RNA MeSH
- nekódující RNA MeSH
- retroelementy MeSH