Most cited article - PubMed ID 17948980
Ester prodrugs of cyclic 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine: synthesis and antiviral activity
Compounds with a phosphonate group, i.e., -P(O)(OH)2 group attached directly to the molecule via a P-C bond serve as suitable non-hydrolyzable phosphate mimics in various biomedical applications. In principle, they often inhibit enzymes utilizing various phosphates as substrates. In this review we focus mainly on biologically active phosphonates that originated from our institute (Institute of Organic Chemistry and Biochemistry in Prague); i.e., acyclic nucleoside phosphonates (ANPs, e.g., adefovir, tenofovir, and cidofovir) and derivatives of non-nucleoside phosphonates such as 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Principal strategies of their syntheses and modifications to prodrugs is reported. Besides clinically used ANP antivirals, a special attention is paid to new biologically active molecules with respect to emerging infections and arising resistance of many pathogens against standard treatments. These new structures include 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines or so-called "open-ring" derivatives, acyclic nucleoside phosphonates with 5-azacytosine as a base moiety, side-chain fluorinated ANPs, aza/deazapurine ANPs. When transformed into an appropriate prodrug by derivatizing their charged functionalities, all these compounds show promising potential to become drug candidates for the treatment of viral infections. ANP prodrugs with suitable pharmacokinetics include amino acid phosphoramidates, pivaloyloxymethyl (POM) and isopropoxycarbonyloxymethyl (POC) esters, alkyl and alkoxyalkyl esters, salicylic esters, (methyl-2-oxo-1,3-dioxol-4-yl) methyl (ODOL) esters and peptidomimetic prodrugs. We also focus on the story of cytostatics related to 9-[2-(phosphonomethoxy)ethyl]guanine and its prodrugs which eventually led to development of the veterinary drug rabacfosadine. Various new ANP structures are also currently investigated as antiparasitics, especially antimalarial agents e.g., guanine and hypoxanthine derivatives with 2-(phosphonoethoxy)ethyl moiety, their thia-analogues and N-branched derivatives. In addition to ANPs and their analogs, we also describe prodrugs of 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a potent inhibitor of the enzyme glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA). Glutamate carboxypeptidase II inhibitors, including 2-PMPA have been found efficacious in various preclinical models of neurological disorders which are caused by glutamatergic excitotoxicity. Unfortunately its highly polar character and hence low bioavailability severely limits its potential for clinical use. To overcome this problem, various prodrug strategies have been used to mask carboxylates and/or phosphonate functionalities with pivaloyloxymethyl, POC, ODOL and alkyl esters. Chemistry and biological characterization led to identification of prodrugs with 44-80 fold greater oral bioavailability (tetra-ODOL-2-PMPA).
- Keywords
- 2-PMPA, FOLH1, GCPII, acyclic nucleoside phosphonates, antivirals, prodrugs, prostate-specific membrane antigen, protides,
- Publication type
- Journal Article MeSH
- Review MeSH
Polyomavirus infections occur commonly in humans and are normally nonfatal. However, in immunocompromised individuals, they are intractable and frequently fatal. Due to a lack of approved drugs to treat polyomavirus infections, cidofovir, a phosphonate nucleotide analog approved to treat cytomegalovirus infections, has been repurposed as an antipolyomavirus agent. Cidofovir has been modified in various ways to improve its efficacies as a broad-spectrum antiviral agent. However, the actual mechanisms and targets of cidofovir and its modified derivatives as antipolyomavirus agents are still under research. Here, polyomavirus large tumor antigen (Tag) activities were identified as the viral target of cidofovir derivatives. The alkoxyalkyl ester derivatives of cidofovir efficiently inhibit polyomavirus DNA replication in cell-free human extracts and a viral in vitro replication system utilizing only purified proteins. We present evidence that DNA helicase and DNA binding activities of polyomavirus Tags are diminished in the presence of low concentrations of alkoxyalkyl ester derivatives of cidofovir, suggesting that the inhibition of viral DNA replication is at least in part mediated by inhibiting single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) binding activities of Tags. These findings show that the alkoxyalkyl ester derivatives of cidofovir are effective in vitro without undergoing further conversions, and we conclude that the inhibitory mechanisms of nucleotide analog-based drugs are more complex than previously believed.
- Keywords
- ATPase, DNA helicase, DNA replication, large T antigen, nucleoside analogs, polyomavirus, protein-DNA interactions,
- MeSH
- Antigens, Viral, Tumor * MeSH
- Cytosine MeSH
- DNA, Viral genetics MeSH
- Esters pharmacology MeSH
- Humans MeSH
- Nucleotides MeSH
- Polyomavirus * genetics MeSH
- DNA Replication MeSH
- Virus Replication MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Viral, Tumor * MeSH
- Cytosine MeSH
- DNA, Viral MeSH
- Esters MeSH
- Nucleotides MeSH
With respect to the strong antiviral activity of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine various types of its side chain fluorinated analogues were prepared. The title compound, (S)-1-[3-fluoro-2-(phosphonomethoxy)propyl]-5-azacytosine (FPMP-5-azaC) was synthesised by the condensation reaction of (S)-2-[(diisopropoxyphosphoryl)methoxy)-3-fluoropropyl p-toluenesulfonate with a sodium salt of 5-azacytosine followed by separation of appropriate N 1 and O 2 regioisomers and ester hydrolysis. Transformations of FPMP-5-azaC to its 5,6-dihydro-5-azacytosine counterpart, amino acid phosphoramidate prodrugs and systems with an annelated five-membered imidazole ring, i.e. imidazo [1,2-a][1,3,5]triazine derivatives were also carried out. 1-(2-Phosphonomethoxy-3,3,3-trifluoropropyl)-5-azacytosine was prepared from 5-azacytosine and trifluoromethyloxirane to form 1-(3,3,3-trifluoro-2-hydroxypropyl)-5-azacytosine which was treated with diisopropyl bromomethanephosphonate followed by deprotection of esters. Antiviral activity of all newly prepared compounds was studied. FPMP-5-azaC diisopropyl ester inhibited the replication of herpes viruses with EC50 values that were about three times higher than that of the reference anti-HCMV drug ganciclovir without displaying cytotoxicity.
- Keywords
- 5-Azacytosine, Acyclic nucleoside phosphonates, Fluorinated nucleotides, Phosphonates, Prodrugs,
- Publication type
- Journal Article MeSH
New 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidine (PMEO-DAPy) and 1-[2-(phosphonomethoxy)ethyl]-5-azacytosine (PME-5-azaC) prodrugs were prepared with a pro-moiety consisting of carbonyloxymethyl esters (POM, POC), alkoxyalkyl esters, amino acid phosphoramidates and/or tyrosine. The activity of the prodrugs was evaluated in vitro against different virus families. None of the synthesized prodrugs demonstrated activity against RNA viruses but some of them proved active against herpesviruses [including herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV)]. The bis(POC) and the bis(amino acid) phosphoramidate prodrugs of PMEO-DAPy inhibited herpesvirus replication at lower doses than the parent compound although the selectivity against HSV and VZV was only slightly improved compared to PMEO-DAPy. The mono-octadecyl ester of PME-5-azaC emerged as the most potent and selective PME-5-azaC prodrug against HSV, VZV and HCMV with EC50's of 0.15-1.12µM while PME-5-azaC only had marginal anti-herpesvirus activity. Although the bis(hexadecylamido-l-tyrosyl) and the bis(POM) esters of PME-5-azaC were also very potent anti-herpesvirus drugs, these were less selective than the mono-octadecyl ester prodrug.
- Keywords
- 5-Azacytosine, Acyclic nucleoside phosphonates, Antivirals, HPMP-5-azaC, Open-ring, PME-azaC, PMEO-DAPy, Phosphonate, Prodrug,
- MeSH
- Antiviral Agents chemical synthesis chemistry pharmacology MeSH
- Cell Line MeSH
- Cytomegalovirus drug effects MeSH
- Humans MeSH
- Organophosphonates chemical synthesis chemistry pharmacology MeSH
- Prodrugs chemical synthesis chemistry pharmacology MeSH
- Pyrimidine Nucleosides chemistry MeSH
- Simplexvirus drug effects MeSH
- Herpesvirus 3, Human drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antiviral Agents MeSH
- Organophosphonates MeSH
- Prodrugs MeSH
- Pyrimidine Nucleosides MeSH
Smallpox was declared eradicated in 1980. However recently, the need of agents effective against poxvirus infection has emerged again. In this paper, we report an original finding that two redox-modulating agents, the ethacrynic and alpha-lipoic acids (EA, LA), inhibit growth of vaccinia virus (VACV) in vitro. The effect of EA and LA was compared with those of beta-mercaptoethanol, DTT and ascorbic acid, but these agents increased VACV growth in HeLa G cells. The inhibitory effects of EA and LA on the growth of VACV were further confirmed in several cell lines of different embryonic origin, in epithelial cells, fibroblasts, macrophages and T-lymphocytes. Finally, we have analyzed the mechanism of action of the two agents. They both decreased expression of VACV late genes, as demonstrated by western blot analysis and activity of luciferase expressed under control of different VACV promoters. In contrast, they did not inhibit virus entry into the cell, expression of VACV early genes or VACV DNA synthesis. The results suggest new directions in development of drugs effective against poxvirus infection.
- MeSH
- Antiviral Agents pharmacology MeSH
- Gene Expression drug effects MeSH
- HeLa Cells MeSH
- Cells, Cultured MeSH
- Ethacrynic Acid pharmacology MeSH
- Thioctic Acid pharmacology MeSH
- Humans MeSH
- Luciferases metabolism MeSH
- Viral Plaque Assay MeSH
- Virus Replication drug effects MeSH
- Genes, Reporter MeSH
- Vaccinia virus drug effects growth & development MeSH
- Blotting, Western MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Antiviral Agents MeSH
- Ethacrynic Acid MeSH
- Thioctic Acid MeSH
- Luciferases MeSH