Most cited article - PubMed ID 18248685
Phylogenetic relationships among Eimeria spp. (Apicomplexa, Eimeriidae) infecting rabbits: evolutionary significance of biological and morphological features
Parasitic protozoa such as Lankesterella and Isospora are common in avian hosts, particularly in passerines. Despite their high prevalence, the diversity of these parasites within avian populations remains poorly understood. This study aimed to assess the diversity of Lankesterella and Isospora in passerine birds, using the SSU rRNA gene to characterize and compare the genetic variation in both parasites across multiple avian host species. For Isospora, the extraintestinal blood stages and oocysts from feces were compared. Minimum spanning networks were constructed to visualize haplogroups in relation to host specificity and to reveal the identity of various developmental stages. A total of 122 sequences from eight passerine species were used to generate a haplotype network for Lankesterella, and a total of 103 sequences (64 from blood and 39 from feces) was used for Isospora. We detected a total of 36 haplotypes for Lankesterella and 33 haplotypes for Isospora. In Lankesterella, we confirmed that the sedge warbler has its own specific lineages, whereas other warbler species share lineages belonging to three haplogroups; blue, great, marsh and willow tits have their own unique groups of lineages. Isospora is less host-specific than Lankesterella in avian hosts; nevertheless, Isospora sequences from blood and feces were identical in their respective hosts. Our findings provide insights into the diversity and host specificity of blood coccidians; moreover, we molecularly characterized the developmental stages of Isospora.
- Keywords
- Atoxoplasma, Eimeriidae, avian blood parasites, coccidia, host specificity, host–parasite interactions, passerines,
- Publication type
- Journal Article MeSH
The Australian skink Egernia stokesii had been recognised as a host of two species of Plasmodium, Plasmodium mackerrasae and P. circularis; nevertheless, molecular data are available for only a single haemosporidian species of this host. Its sequences are labelled as "Plasmodium sp." or "Plasmodium mackerrasae", but morphological characteristics of this isolate are unavailable. Phylogenetic analyses of these sequences placed them into the clade of the genus Haemocystidium. In this study, blood samples of six E. stokesii were analysed by both, molecular and microscopic methods to clarify the haemosporidia of this lizard. Application of these approaches offered discordant results. Whereas sequence analysis clustered our isolates with lizard species of Haemocystidium, morphology of blood stages is more akin to Plasmodium than Haemocystidium. However, limited sampling, indistinguishable nuclei/merozoites and risk of possible hidden presence of mixed infection prevent reliable species identification of detected parasites or their description as new species of Haemocystidium.
- Keywords
- Egernia stokesii, Haemocystidium, Plasmodium mackerrasae, Australia, Haemosporidia, Lizard,
- MeSH
- Phylogeny * MeSH
- Haemosporida * genetics classification isolation & purification MeSH
- Lizards * parasitology MeSH
- Blood parasitology MeSH
- Microscopy MeSH
- Molecular Sequence Data MeSH
- DNA, Protozoan genetics MeSH
- Protozoan Infections, Animal parasitology MeSH
- DNA, Ribosomal genetics MeSH
- RNA, Ribosomal, 18S genetics MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Australia MeSH
- Names of Substances
- DNA, Protozoan MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 18S MeSH
Blood parasites of the genus Hemolivia Petit, Landau, Baccam and Lainson, 1990 (Adeleorina: Karyolysidae) are hemogregarines of ectothermic vertebrates, such as lizards, chelonians, and toads. Only five species of Hemolivia from vertebrate hosts and one from their tick vector have been described so far. In the present study, Central American wood turtles (Rhinoclemmys pulcherrima manni) originating from Southern Nicaragua were screened for the presence of hemogregarines. Ten out of 30 specimens (33.3%) were positive for Hemolivia using both approaches - microscopy and PCR-based analyses. Phylogenetic analyses based on the 18S rRNA gene revealed the presence of two haplotypes, both placed as sister taxa in the Hemolivia clade. Their phylogenetic position was supported by high bootstrap values and high posterior probabilities, suggesting that there are at least two new distinct haplotypes corresponding to two distinct species. However, the specimens of each haplotype were microscopically indistinguishable from each other based on the gamont morphology, therefore, only a single species could be described and named, as Hemolivia pulcherrima n. sp. We consider that the uniform morphology of the most common blood stages of species of the genus Hemolivia complicates their differential diagnosis. Sequence divergence and different host spectra, therefore, remain the only differentiating tools.
TITLE: Espèces d’Hemolivia infectant les tortues peintes d’Amérique centrale (Rhinoclemmys pulcherrima manni) et problèmes de diagnostic différentiel au sein du genre Hemolivia. ABSTRACT: Les parasites sanguins du genre Hemolivia Petit, Landau, Baccam et Lainson, 1990 (Adeleorina : Karyolysidae) sont des hémogrégarines de vertébrés ectothermes, tels que les lézards, les tortues et les crapauds. Seules cinq espèces d’Hemolivia provenant d’hôtes vertébrés et une de leur tique vectrice ont été décrites jusqu’à présent. Dans cette étude, des tortues peintes d’Amérique centrale (Rhinoclemmys pulcherrima manni) originaires du sud du Nicaragua ont été examinées pour détecter la présence d’hémogrégarines. Dix tortues sur 30 (33,3 %) étaient positives pour Hemolivia en utilisant les deux approches de microscopie et d’analyse de PCR. Les analyses phylogénétiques basées sur le gène de l’ARNr 18S ont révélé la présence de deux haplotypes, tous deux placés comme taxons frères dans le clade Hemolivia. Leur position phylogénétique était étayée par des valeurs de bootstrap et des probabilités postérieures élevées, suggérant qu’il existe au moins deux nouveaux haplotypes distincts correspondant à deux espèces distinctes. Cependant, les spécimens de chaque haplotype étaient impossibles à distinguer les uns des autres au microscope sur la base de la morphologie des gamontes. Par conséquent, une seule espèce a pu être décrite et nommée, comme Hemolivia pulcherrima n. sp. Nous considérons que l’uniformité de la morphologie des stades sanguins les plus courants des espèces du genre Hemolivia complique leur diagnostic différentiel. Les divergences de séquences et les différents spectres d’hôtes restent donc les seuls outils de différenciation.
- Keywords
- Differential diagnosis, Hemogregarine, Hemolivia, Morphology, Nicaragua,
- MeSH
- Diagnosis, Differential MeSH
- Phylogeny MeSH
- Lizards * parasitology MeSH
- Turtles * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Central America MeSH
Adeleorid apicomplexan parasites of the genus Hepatozoon Miller, 1908 are broadly distributed among the rodents. Broader molecular data on Hepatozoon from Palaearctic squirrels are necessary for evaluation of diversity and origin of Hepatozoon in Eurasian red squirrel Sciurus vulgaris populations, considering ongoing invasion by Gray squirrel S. carolinensis. Our report brings a set of molecular data from a population of S. vulgaris in the Czech Republic, non-invaded by any invasive squirrel species. Cadavers of 41 Eurasian red squirrels were examined using nested PCR targeting 18S rRNA gene; 30 animals tested positive for the presence of Hepatozoon spp. DNA in at least one tissue. Phylogenetic analysis of obtained sequence types revealed relatedness to sequences of Hepatozoon sp. from S. vulgaris from Spain and the Netherlands, forming a sister clade to Hepatozoon isolates from other European rodents. The fact that all available 18S rRNA gene sequences form a monophyletic clade is interpreted as a presence of a single Hepatozoon species in S. vulgaris in continental Europe, most probably Hepatozoon sciuri. The presented molecular data on the Hepatozoon from European squirrels provides a basis for future studies on possible exchange of Hepatozoon species between Eurasian red and gray squirrels.
- Keywords
- 18S rRNA gene, Europe, Hemoparasites, Hepatozoon, Sciurus, Squirrel,
- MeSH
- Eucoccidiida * classification isolation & purification MeSH
- Phylogeny MeSH
- RNA, Ribosomal, 18S genetics MeSH
- Sciuridae parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- RNA, Ribosomal, 18S MeSH
Intracellular parasites of the genus Eimeria are described as tissue/host-specific. Phylogenetic classification of rodent Eimeria suggested that some species have a broader host range than previously assumed. We explore whether Eimeria spp. infecting house mice are misclassified by the most widely used molecular markers due to a lack of resolution, or whether, instead, these parasite species are indeed infecting multiple host species.With the commonly used markers (18S/COI), we recovered monophyletic clades of E. falciformis and E. vermiformis from Mus that included E. apionodes identified in other rodent host species (Apodemus spp., Myodes glareolus, and Microtus arvalis). A lack of internal resolution in these clades could suggest the existence of a species complex with a wide host range infecting murid and cricetid rodents. We question, however, the power of COI and 18S markers to provide adequate resolution for assessing host specificity. In addition to the rarely used marker ORF470 from the apicoplast genome, we present multilocus genotyping as an alternative approach. Phylogenetic analysis of 35 nuclear markers differentiated E. falciformis from house mice from isolates from Apodemus hosts. Isolates of E. vermiformis from Mus are still found in clusters interspersed with non-Mus isolates, even with this high-resolution data.In conclusion, we show that species-level resolution should not be assumed for COI and 18S markers in coccidia. Host-parasite cospeciation at shallow phylogenetic nodes, as well as contemporary coccidian host ranges more generally, is still open questions that need to be addressed using novel genetic markers with higher resolution.
- Keywords
- 18S, COI, Eimeria, multilocus sequence typing, phylogenetics, rodents,
- Publication type
- Journal Article MeSH
Detection and quantification of coccidia in studies of wildlife can be challenging. Therefore, prevalence of coccidia is often not assessed at the parasite species level in non-livestock animals. Parasite species - specific prevalences are especially important when studying evolutionary questions in wild populations. We tested whether increased host population density increases prevalence of individual Eimeria species at the farm level, as predicted by epidemiological theory. We studied free-living commensal populations of the house mouse (Mus musculus) in Germany, and established a strategy to detect and quantify Eimeria infections. We show that a novel diagnostic primer targeting the apicoplast genome (Ap5) and coprological assessment after flotation provide complementary detection results increasing sensitivity. Genotyping PCRs confirm detection in a subset of samples and cross-validation of different PCR markers does not indicate bias towards a particular parasite species in genotyping. We were able to detect double infections and to determine the preferred niche of each parasite species along the distal-proximal axis of the intestine. Parasite genotyping from tissue samples provides additional indication for the absence of species bias in genotyping amplifications. Three Eimeria species were found infecting house mice at different prevalences: Eimeria ferrisi (16.7%; 95% CI 13.2-20.7), E. falciformis (4.2%; 95% CI 2.6-6.8) and E. vermiformis (1.9%; 95% CI 0.9-3.8). We also find that mice in dense populations are more likely to be infected with E. falciformis and E. ferrisi. We provide methods for the assessment of prevalences of coccidia at the species level in rodent systems. We show and discuss how such data can help to test hypotheses in ecology, evolution and epidemiology on a species level.
- Keywords
- Coccidia, Diagnostic PCR, Eimeria, House mice, Species-specific prevalence, qPCR,
- Publication type
- Journal Article MeSH
The arctic fox (Vulpes lagopus), an apex predator with an omnipresent distribution in the Arctic, is a potential source of intestinal parasites that may endanger people and pet animals such as dogs, thus posing a health risk. Non-invasive methods, such as coprology, are often the only option when studying wildlife parasitic fauna. However, the detection and identification of parasites are significantly enhanced when used in combination with methods of molecular biology. Using both approaches, we identified unicellular and multicellular parasites in faeces of arctic foxes and carcasses of sibling voles (Microtus levis) in Svalbard, where molecular methods are used for the first time. Six new species were detected in the arctic fox in Svalbard, Eucoleus aerophilus, Uncinaria stenocephala, Toxocara canis, Trichuris vulpis, Eimeria spp., and Enterocytozoon bieneusi, the latter never found in the arctic fox species before. In addition, only one parasite was found in the sibling vole in Svalbard, the Cryptosporidium alticolis, which has never been detected in Svalbard before.
- Keywords
- Arctic fox, Coprology, Parasites, Sibling vole, Svalbard,
- MeSH
- Ancylostomatoidea isolation & purification MeSH
- Arvicolinae parasitology MeSH
- Helminths isolation & purification MeSH
- Cryptosporidium isolation & purification MeSH
- Animals, Wild parasitology MeSH
- Eimeria isolation & purification MeSH
- Feces parasitology MeSH
- Nematoda isolation & purification MeSH
- Foxes parasitology MeSH
- Intestinal Diseases, Parasitic veterinary MeSH
- Dogs MeSH
- Toxocara canis isolation & purification MeSH
- Trichuris isolation & purification MeSH
- Animals MeSH
- Check Tag
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Arctic Regions MeSH
- Svalbard MeSH
Using a combination of morphological and molecular data, we describe a new apicomplexan parasite, Isospora svecica sp. n., from the white-spotted bluethroat, Luscinia svecica cyanecula, from the Czech Republic. Oocysts were found in its intestinal tract. Sporulation was exogenous and took 1-3 days. The oocysts were slightly ellipsoidal, of average size 26.17 × 20.33 μm, with a smooth bilayered wall. Micropyle, oocyst residuum, and polar granules were absent. Sporocysts were bottle-shaped, of an average size of 18.82 × 8.82 μm, with a thin, colourless wall. A conspicuous knob-like Stieda body was present. Substieda body was barely visible. Sporocyst residuum was present in the form of granules of various sizes. Sporozoites were banana-shaped and contained large anterior and small posterior refractile bodies. Partial DNA sequences of three genes were obtained from oocysts of Isospora svecica sp. n., being most closely related to other isosporans described from passerines. Little is known about the parasites of the avian family Muscicapidae, including coccidia, a highly prevalent parasitic protist group in all vertebrate classes. Only six species of the genus Isospora have so far been described in Muscicapidae, together with several "Isospora sp." that in fact most likely represent Isospora lacazei. The newly described Isospora svecica sp. n. differs morphologically from other coccidia reported from muscicapid birds, and represents the first coccidian species described from Luscinia svecica.
- Keywords
- Aves, Coccidia, Isospora, Morphology, Muscicapidae, Phylogeny,
- MeSH
- Isospora classification cytology genetics growth & development MeSH
- Isosporiasis parasitology veterinary MeSH
- Oocysts classification cytology genetics growth & development MeSH
- Passeriformes parasitology MeSH
- Genes, Protozoan genetics MeSH
- Sporozoites classification cytology genetics growth & development MeSH
- Intestines parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
The degree of host specificity, its phylogenetic conservativeness and origin are virtually unknown in Eimeria. This situation is largely due to the inadequate sample of eimerian molecular data available for reliable phylogenetic analyses. In this study, we extend the data set by adding 71 new sequences of coccidia infecting 16 small-mammal genera, mostly rodents. According to the respective feasibility of PCR gene amplification, the new samples are represented by one or more of the following genes: nuclear 18S rRNA, plastid ORF 470, and mitochondrial COI. Phylogenetic analyses of these sequences confirm the previous hypothesis that Eimeria, in its current morphology-based delimitation, is not a monophyletic group. Several samples of coccidia corresponding morphologically to other genera are scattered among the Eimeria lineages. More importantly, the distribution of eimerians from different hosts indicates that the clustering of eimerian species is influenced by their host specificity, but does not arise from a cophylogenetic/cospeciation process; while several clusters are specific to a particular host group, inner topologies within these clusters do not reflect host phylogeny. This observation suggests that the host specificity of Eimeria is caused by adaptive rather than cophylogenetic processes.
- MeSH
- Species Specificity MeSH
- Eimeria classification physiology MeSH
- Feces parasitology MeSH
- Phylogeny * MeSH
- Adaptation, Physiological genetics MeSH
- Rodentia parasitology MeSH
- Host Specificity MeSH
- Host-Parasite Interactions MeSH
- Coccidiosis parasitology veterinary MeSH
- Rodent Diseases parasitology MeSH
- Plastids genetics MeSH
- DNA, Protozoan classification genetics MeSH
- Electron Transport Complex IV classification genetics MeSH
- RNA, Ribosomal, 18S classification genetics MeSH
- Sequence Analysis, DNA MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Protozoan MeSH
- Electron Transport Complex IV MeSH
- RNA, Ribosomal, 18S MeSH
We describe two new species of Eimeria Schneider, 1875 from the gerbiline rodent Gerbilliscus guineae in the Niokolo Koba National Park, Senegal. Faecal examination of samples revealed the presence of sporulated oöcysts of two eimerian coccidia, both possessing an oöcyst residuum. Eimeria permira n. sp. is remarkable in terms of oöcyst size and oöcyst wall texture. Sporulated oöcysts are ellipsoidal, 45.8 (42-50) x 32.5 (31-38) mum; the oöcyst wall is 3-4 mum thick, composed of three layers, with the outer layer sheathed by rough granular material; and the sporocysts are broadly ellipsoidal, 15.4 (15-16) x 11 and with a Stieda body present. Oöcysts of Eimeria gerbillisci n. sp. are subspherical, 22.5 (19.5-24) x 18.8 (16.5-20) mum, with a colourless, faintly granulated oöcyst wall 1.5 thick; and the sporocysts are 10.1 (10-12) x 6.7 (6-8), broadly ellipsoidal and often somewhat pointed towards both ends.
- MeSH
- Species Specificity MeSH
- Eimeria classification isolation & purification physiology MeSH
- Feces parasitology MeSH
- Gerbillinae parasitology MeSH
- Microscopy MeSH
- Spores, Protozoan ultrastructure MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Senegal MeSH