Nejvíce citovaný článek - PubMed ID 18259069
Crystals of DhaA mutants from Rhodococcus rhodochrous NCIMB 13064 diffracted to ultrahigh resolution: crystallization and preliminary diffraction analysis
Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon-halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2(1)2(1)2(1) as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively.
- MeSH
- 2-propanol MeSH
- bakteriální proteiny chemie MeSH
- difrakce rentgenového záření MeSH
- hydrolasy chemie genetika metabolismus MeSH
- hydrolýza MeSH
- izoenzymy chemie genetika MeSH
- katalýza MeSH
- krystalizace MeSH
- krystalografie rentgenová metody MeSH
- ligandy MeSH
- propan analogy a deriváty MeSH
- Rhodococcus enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 1,2,3-trichloropropane MeSH Prohlížeč
- 2-propanol MeSH
- bakteriální proteiny MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- izoenzymy MeSH
- ligandy MeSH
- propan MeSH
A novel enzyme, DbeA, belonging to the haloalkane dehalogenase family (EC 3.8.1.5) was isolated from Bradyrhizobium elkani USDA94. This haloalkane dehalogenase is closely related to the DbjA enzyme from B. japonicum USDA110 (71% sequence identity), but has different biochemical properties. DbeA is generally less active and has a higher specificity towards brominated and iodinated compounds than DbjA. In order to understand the altered activity and specificity of DbeA, its mutant variant DbeA1, which carries the unique fragment of DbjA, was also constructed. Both wild-type DbeA and DbeA1 were crystallized using the sitting-drop vapour-diffusion method. The crystals of DbeA belonged to the primitive orthorhombic space group P2(1)2(1)2(1), while the crystals of DbeA1 belonged to the monoclinic space group C2. Diffraction data were collected to 2.2 A resolution for both DbeA and DbeA1 crystals.