Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
21301099
PubMed Central
PMC3034621
DOI
10.1107/s1744309110051286
PII: S1744309110051286
Knihovny.cz E-zdroje
- MeSH
- 2-propanol MeSH
- bakteriální proteiny chemie MeSH
- difrakce rentgenového záření MeSH
- hydrolasy chemie genetika metabolismus MeSH
- hydrolýza MeSH
- izoenzymy chemie genetika MeSH
- katalýza MeSH
- krystalizace MeSH
- krystalografie rentgenová metody MeSH
- ligandy MeSH
- propan analogy a deriváty MeSH
- Rhodococcus enzymologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 1,2,3-trichloropropane MeSH Prohlížeč
- 2-propanol MeSH
- bakteriální proteiny MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy MeSH
- izoenzymy MeSH
- ligandy MeSH
- propan MeSH
Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon-halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2(1)2(1)2(1) as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively.
Institute of Physical Biology University of South Bohemia Ceske Budejovice Nove Hrady Czech Republic
Zobrazit více v PubMed
Bergfors, T. M. (2003). J. Struct. Biol. 142, 66–76. PubMed
Bidmanova, S., Chaloupkova, R., Damborsky, J. & Prokop, Z. (2010). Anal. Bioanal. Chem. 398, 1891–1898. PubMed
Bradford, M. M. (1976). Anal. Biochem. 72, 248–254. PubMed
Campbell, D. W., Muller, C. & Reardon, K. F. (2006). Biotechnol. Lett. 28, 883–887. PubMed
Carrea, G. & Riva, S. (2000). Angew. Chem. Int. Ed. 39, 2226–2254. PubMed
Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, 760–763. PubMed
Dauter, Z. (1999). Acta Cryst. D55, 1703–1717. PubMed
Diederichs, K. (2006). Acta Cryst. D62, 96–101. PubMed
Diederichs, K. & Karplus, P. A. (1997). Nature Struct. Biol. 4, 269–275. PubMed
Ducruix, A. & Giegé, R. (1999). Crystallization of Nucleic Acids and Proteins: A Practical Approach, 2nd ed. Oxford University Press.
Janssen, D. B. (2004). Curr. Opin. Chem. Biol. 8, 150–159. PubMed
Janssen, D. B. (2007). Adv. Appl. Microbiol. 61, 233–252. PubMed
Jesenska, A., Sykora, J., Olzynska, A., Brezovsky, J., Zdrahal, Z., Damborsky, J. & Hof, M. (2009). J. Am. Chem. Soc. 131, 494–501. PubMed
Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800.
Kabsch, W. (2010a). Acta Cryst. D66, 125–132. PubMed PMC
Kabsch, W. (2010b). Acta Cryst. D66, 133–144. PubMed PMC
Klibanov, A. M. (2001). Nature (London), 409, 241–246. PubMed
Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497. PubMed
Nardini, M. & Dijsktra, B. W. (1999). Curr. Opin. Struct. Biol. 9, 732–737. PubMed
Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., Sussman, J. L., Verschueren, K. H. G. & Goldman, A. (1992). Protein Eng. 5, 197–211. PubMed
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. PubMed
Pavlova, M., Klvana, M., Prokop, Z., Chaloupkova, R., Banas, P., Otyepka, M., Wade, R. C., Tsuda, M., Nagata, Y. & Damborsky, J. (2009). Nature Chem. Biol. 5, 727–733. PubMed
Prokop, Z., Damborsky, J., Nagata, Y. & Janssen, D. B. (2004). Patent WO 2006/079295 A2.
Prokop, Z., Damborsky, J., Oplustil, F., Jesenska, A. & Nagata, Y. (2005). Patent WO 2006/128390 A1.
Prokop, Z., Oplustil, F., DeFrank, J. & Damborsky, J. (2006). Biotechnol. J. 1, 1370–1380. PubMed
Prokop, Z., Sato, Y., Brezovsky, J., Mozga, T., Chaloupkova, R., Koudelakova, T., Jerabek, P., Stepankova, V., Natsume, R., Leeuwen, J. G. E., Janssen, D. B., Florian, J., Nagata, Y., Senda, T. & Damborsky, J. (2010). Angew. Chem. Int. Ed. 49, 6111–6115. PubMed
Stsiapanava, A., Dohnalek, J., Gavira, J. A., Kuty, M., Koudelakova, T., Damborsky, J. & Kuta Smatanova, I. (2010). Acta Cryst. D66, 962–969. PubMed
Stsiapanava, A., Koudelakova, T., Lapkouski, M., Pavlova, M., Damborsky, J. & Kuta Smatanova, I. (2008). Acta Cryst. F64, 137–140. PubMed PMC
Stucki, G. & Thuer, M. (1995). Environ. Sci. Technol. 29, 2339–2345. PubMed
Teng, T.-Y. (1990). J. Appl. Cryst. 23, 387–391.
Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25. PubMed
Weiss, M. S. (2001). J. Appl. Cryst. 34, 130–135.