Most cited article - PubMed ID 18261049
Divergence with gene flow between Ponto-Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography
Understanding the historical contributions of differing glacial refugia is key to evaluating the roles of microevolutionary forces, such as isolation, introgression, and selection in shaping genomic diversity in present-day populations. In Europe, where both Mediterranean and extra-Mediterranean (e.g., Carpathian) refugia of the bank vole (Clethrionomys glareolus) have been identified, mtDNA indicates that extra-Mediterranean refugia were the main source of colonization across the species range, while Mediterranean peninsulas harbor isolated, endemic lineages. Here, we critically evaluate this hypothesis using previously generated genomic data (>6,000 SNPs) for over 800 voles, focusing on genomic contributions to bank voles in central Europe, a key geographic area in considering range-wide colonization. The results provide clear evidence that both extra-Mediterranean (Carpathian) and Mediterranean (Spanish, Calabrian, and Balkan) refugia contributed to the ancestry and genomic diversity of bank vole populations across Europe. Few strong barriers to dispersal and frequent admixture events in central Europe have led to a prominent mid-latitude peak in genomic diversity. Although the genomic contribution of the centrally located Carpathian refugium predominates, populations in different parts of Europe have admixed origins from Mediterranean (28%-47%) and the Carpathian (53%-72%) sources. We suggest that the admixture from Mediterranean refugia may have provisioned adaptive southern alleles to more northern populations, facilitating the end-glacial spread of the admixed populations and contributing to increased bank vole diversity in central Europe. This study adds critical details to the complex end-glacial colonization history of this well-studied organism and underscores the importance of genomic data in phylogeographic interpretation.
- Keywords
- Myodes glareolus, SNP, admixture, genotyping‐by‐sequencing, postglacial colonization,
- Publication type
- Journal Article MeSH
As a result of specific adaptations and habitat preferences strongly rheophilic fish species may show high levels of endemism. Many temperate rheophilic fish species were subjected to a series of range contractions during the Pleistocene, and then successfully expanded during the Holocene, colonising previously abandoned areas. The Carpathian barbel (Barbus carpathicus Kotlík, Tsigenopoulos, Ráb et Berrebi 2002) occurs in the montane streams in three basins of the main Central European rivers in the northern part of the Carpathian range. We used genetic variation within 3 mitochondrial and 9 microsatellite loci to determine a pattern of postglacial expansion in B. carpathicus. We found that overall genetic variation within the species is relatively low. Estimate of time to the most recent common ancestor (tMRCA) of mitochondrial sequences falls within the Holocene. The highest levels of genetic variation found in upper reaches of the Tisa river in the Danube basin suggest that glacial refugia were located in the south-eastern part of the species range. Our data suggest that the species crossed different watersheds at least six times as three genetically distinct groups (probably established in different expansion episodes) were found in northern part of the species range. Clines of genetic variation were observed in both the Danube and Vistula basins, which probably resulted from subsequent bottlenecks while colonizing successive habitats (south eastern populations) or due to the admixture of genetically diverse individuals to a previously uniform population (Vistula basin). Therefore, B. carpathicus underwent both demographic breakdowns and expansions during the Holocene, showing its distribution and demography are sensitive to environmental change. Our findings are important in the light of the current human-induced habitats alterations.
- MeSH
- Cyprinidae genetics MeSH
- Genetic Variation MeSH
- Haplotypes MeSH
- Microsatellite Repeats MeSH
- DNA, Mitochondrial genetics MeSH
- Evolution, Molecular * MeSH
- Molecular Sequence Data MeSH
- Genetics, Population MeSH
- Cluster Analysis MeSH
- Geography MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
Human-aided dispersal can result in phylogeographic patterns that do not reflect natural historical processes, particularly in species prone to intentional translocations by humans. Here, we use a multiple-gene sequencing approach to assess the effects of human-aided dispersal on phylogeography of the tench Tinca tinca, a widespread Eurasian freshwater fish with a long history in aquaculture. Spatial genetic analysis applied to sequence data from four unlinked loci and 67 geographic localities (38-382 gene copies per locus) defined two groups of populations that were little structured geographically but were significantly differentiated from each other, and it identified locations of major genetic breaks, which were concordant across genes and were driven by distributions of two phylogroups. This pattern most reasonably reflects isolation in two major glacial refugia and subsequent range expansions, with the Eastern and Western phylogroups remaining largely allopatric throughout the tench range. However, this phylogeographic variation was also present in all 17 cultured breeds studied, and some populations at the western edge of the native range contained the Eastern phylogroup. Thus, natural processes have played an important role in structuring tench populations, but human-aided dispersal has also contributed significantly, with the admixed genetic composition of cultured breeds most likely contributing to the introgression.
- Keywords
- Tinca tinca, intron, mtDNA, secondary contact, species range, stocking,
- Publication type
- Journal Article MeSH