Most cited article - PubMed ID 18421565
Acaricidal effects of natural six-carbon and nine-carbon aldehydes on stored-product mites
BACKGROUND: Bacteria are associated with the gut, fat bodies and reproductive organs of stored product mites (Acari: Astigmata). The mites are pests due to the production of allergens. Addition of antibiotics to diets can help to characterize the association between mites and bacteria. METHODOLOGY AND PRINCIPAL FINDINGS: Ampicillin, neomycin and streptomycin were added to the diets of mites and the effects on mite population growth (Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae) and associated bacterial community structure were assessed. Mites were treated by antibiotic supplementation (1 mg g(-1) of diet) for 21 days and numbers of mites and bacterial communities were analyzed and compared to the untreated control. Bacterial quantities, determined by real-time PCR, significantly decreased in antibiotic treated specimens from 5 to 30 times in A. siro and T. putrescentiae, while no decline was observed in L. destructor. Streptomycin treatment eliminated Bartonella-like bacteria in the both A. siro and T. putrescentiae and Cardinium in T. putrescentiae. Solitalea-like bacteria proportion increased in the communities of neomycin and streptomycin treated A. siro specimens. Kocuria proportion increased in the bacterial communities of ampicillin and streptomycin treated A. siro and neomycin and streptomycin treated L. destructor. CONCLUSIONS/SIGNIFICANCE: The work demonstrated the changes of mite associated bacterial community under antibiotic pressure in pests of medical importance. Pre-treatment of mites by 1 mg g(-1) antibiotic diets improved mite fitness as indicated accelerated population growth of A. siro pretreated streptomycin and neomycin and L. destructor pretreated by neomycin. All tested antibiotics supplemented to diets caused the decrease of mite growth rate in comparison to the control diet.
- MeSH
- Acaridae drug effects growth & development microbiology MeSH
- Ampicillin pharmacology MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacteria genetics MeSH
- Population Density MeSH
- Microbial Consortia drug effects MeSH
- Neomycin pharmacology MeSH
- RNA, Ribosomal, 16S MeSH
- Streptomycin pharmacology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ampicillin MeSH
- Anti-Bacterial Agents MeSH
- Neomycin MeSH
- RNA, Ribosomal, 16S MeSH
- Streptomycin MeSH
The effect of four avermectins on the population growth of pest mite Lepidoglyphus destructor was tested in laboratory experiments. The avermectins (abamectin, doramectin, emamectin-benzoate and ivermectin) of analytical purity were incorporated into an experimental diet at the same molar concentrations, ranging from 0.16 to 8 nmol/3 g of diet. Using an initial population of 50 mites, the population growth was recorded after 21 days at 85 % relative humidity and 25 °C; 12 repeats were performed per avermectin concentration and control. The diets containing the avermectins successfully suppressed the population growth of L. destructor. The EC(50) recalculated to ng of substance per g of diet showed different suppressive effects of the avermectins: doramectin (181 ng/g diet), abamectin (299 ng/g diet), emamectin-benzoate (812 ng/g diet) and ivermectin (992 ng/g diet). Of the tested avermectins, abamectin is registered for the control of phytophagous mites and ivermectin against parasitic mites, i.e., Psoroptes ovis. Although emamectin-benzoate and ivermectin were less effective on L. destructor, all of the tested avermectins are highly suitable compounds for the control of synanthropic mites.
- MeSH
- Acaricides administration & dosage pharmacology MeSH
- Ivermectin analogs & derivatives pharmacology MeSH
- Reproduction drug effects MeSH
- Mites drug effects MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acaricides MeSH
- avermectin MeSH Browser
- Ivermectin MeSH