Nejvíce citovaný článek - PubMed ID 18471707
Pancreatic cancer is the third leading cause of cancer death in the developed world and is predicted to become the second by 2030. A cure may be achieved only with surgical resection of an early diagnosed disease. Surgery for more advanced disease is challenging and can be contraindicated for many reasons. Neoadjuvant therapy may improve the probability of achieving R0 resection. It consists of systemic treatment followed by radiation therapy applied concurrently or sequentially with cytostatics. A novel approach to irradiation, stereotactic body radiotherapy (SBRT), has the potential to improve treatment results. SBRT can deliver higher doses of radiation to the tumor in only a few treatment fractions. It has attracted significant interest for pancreatic cancer patients, as it is completed quickly, requires less time away from full-dose chemotherapy, and is well-tolerated than conventional radiotherapy. In this review, we aim to provide the reader with a basic overview of current evidence for SBRT indications in the treatment of pancreatic tumors. In the second part of the review, we focus on practical information with respect to SBRT treatment plan preparation the performance of such therapy. Finally, we discuss future directions related to the use of magnetic resonance linear accelerators.
- Klíčová slova
- neoadjuvant therapy, pancreatic neoplasms, review, stereotactic body radiotherapy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Exosomes arise from viable cancer cells and may reflect a different biology than circulating cell-free DNA (cfDNA) shed from dying tissues. We compare exosome-derived DNA (exoDNA) to cfDNA in liquid biopsies of patients with pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS: Patient samples were obtained between 2003 and 2010, with clinically annotated follow up to 2015. Droplet digital PCR was performed on exoDNA and cfDNA for sensitive detection of KRAS mutants at codons 12/13. A cumulative series of 263 individuals were studied, including a discovery cohort of 142 individuals: 68 PDAC patients of all stages; 20 PDAC patients initially staged with localized disease, with blood drawn after resection for curative intent; and 54 age-matched healthy controls. A validation cohort of 121 individuals (39 cancer patients and 82 healthy controls) was studied to validate KRAS detection rates in early-stage PDAC patients. Primary outcome was circulating KRAS status as detected by droplet digital PCR. Secondary outcomes were disease-free and overall survival. RESULTS: KRAS mutations in exoDNA, were identified in 7.4%, 66.7%, 80%, and 85% of age-matched controls, localized, locally advanced, and metastatic PDAC patients, respectively. Comparatively, mutant KRAS cfDNA was detected in 14.8%, 45.5%, 30.8%, and 57.9% of these individuals. Higher exoKRAS MAFs were associated with decreased disease-free survival in patients with localized disease. In the validation cohort, mutant KRAS exoDNA was detected in 43.6% of early-stage PDAC patients and 20% of healthy controls. CONCLUSIONS: Exosomes are a distinct source of tumor DNA that may be complementary to other liquid biopsy DNA sources. A higher percentage of patients with localized PDAC exhibited detectable KRAS mutations in exoDNA than previously reported for cfDNA. A substantial minority of healthy samples demonstrated mutant KRAS in circulation, dictating careful consideration and application of liquid biopsy findings, which may limit its utility as a broad cancer-screening method.
- Klíčová slova
- KRAS, circulating tumor DNA, exosome, liquid biopsy, pancreatic cancer,
- MeSH
- časná detekce nádoru metody MeSH
- DNA nádorová krev genetika MeSH
- dospělí MeSH
- duktální karcinom slinivky břišní krev genetika patologie MeSH
- exozómy genetika MeSH
- Kaplanův-Meierův odhad MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery krev genetika MeSH
- nádory slinivky břišní krev genetika patologie MeSH
- přežití bez známek nemoci MeSH
- proporcionální rizikové modely MeSH
- protoonkogenní proteiny p21(ras) genetika MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA nádorová MeSH
- KRAS protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- protoonkogenní proteiny p21(ras) MeSH