Nejvíce citovaný článek - PubMed ID 18607497
Ocular surface defects represent one of the most common causes of impaired vision or even blindness. For treatment, keratoplasty represents the first choice. However, if corneal defects are more extensive and associated with a limbal stem cell (LSC) deficiency, corneal transplantation is not a sufficient therapeutic procedure and only viable approach to treatment is the transplantation of LSCs. When the LSC deficiency is a bilateral disorder, autologous LSCs are not available. The use of allogeneic LSCs requires strong immunosuppression, which leads to side-effects, and the treatment is not always effective. The alternative and perspective approach to the treatment of severe ocular surface injuries and LSC deficiency is offered by the transplantation of autologous mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of the particular patient, grow well in vitro and can be transferred, using an appropriate scaffold, onto the damaged ocular surface. Here they exert beneficial effects by possible direct differentiation into corneal epithelial cells, by immunomodulatory effects and by the production of numerous trophic and growth factors. Recent experiments utilizing the therapeutic properties of MSCs in animal models with a mechanically or chemically injured ocular surface have yielded promising results and demonstrated significant corneal regeneration, improved corneal transparency and a rapid healing process associated with the restoration of vision. The use of autologous MSCs thus represents a promising therapeutic approach and offers hope for patients with severe ocular surface injuries and LSC deficiency.
- MeSH
- autologní transplantace MeSH
- biologické modely MeSH
- buněčná diferenciace MeSH
- buňky kostní dřeně cytologie metabolismus MeSH
- CD antigeny metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- mezibuněčné signální peptidy a proteiny metabolismus MeSH
- nanovlákna * MeSH
- nemoci rohovky chirurgie MeSH
- pohyb buněk MeSH
- transplantace kmenových buněk metody MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- tuková tkáň cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CD antigeny MeSH
- mezibuněčné signální peptidy a proteiny MeSH
Electrospun gelatin and poly-ε-caprolactone (PCL) nanofibers were prepared using needleless technology and their biocompatibility and therapeutic efficacy have been characterized in vitro in cell cultures and in an experimental model of a skin wound. Human dermal fibroblasts, keratinocytes and mesenchymal stem cells seeded on the nanofibers revealed that both nanofibers promoted cell adhesion and proliferation. The effect of nanofibers on wound healing was examined using a full thickness wound model in rats and compared with a standard control treatment with gauze. Significantly faster wound closure was found with gelatin after 5 and 10 days of treatment, but no enhancement with PCL nanofibers was observed. Histological analysis revealed enhanced epithelialisation, increased depth of granulation tissue and increased density of myofibroblasts in the wound area with gelatin nanofibers. The results show that gelatin nanofibers produced by needleless technology accelerate wound healing and may be suitable as a scaffold for cell transfer and skin regeneration.
- MeSH
- biokompatibilní materiály * MeSH
- hojení ran * MeSH
- lidé MeSH
- nanovlákna * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály * MeSH