Nejvíce citovaný článek - PubMed ID 18641269
Three-dimensional angle between the QRS complex and T wave vectors is a known powerful cardiovascular risk predictor. Nevertheless, several physiological properties of the angle are unknown or poorly understood. These include, among others, intra-subject profiles and stability of the angle relationship to heart rate, characteristics of angle/heart-rate hysteresis, and the changes of these characteristics with different modes of QRS-T angle calculation. These characteristics were investigated in long-term 12-lead Holter recordings of 523 healthy volunteers (259 females). Three different algorithmic methods for the angle computation were based on maximal vector magnitude of QRS and T wave loops, areas under the QRS complex and T wave curvatures in orthogonal leads, and weighted integration of all QRS and T wave vectors moving around the respective 3-dimensional loops. These methods were applied to orthogonal leads derived either by a uniform conversion matrix or by singular value decomposition (SVD) of the original 12-lead ECG, giving 6 possible ways of expressing the angle. Heart rate hysteresis was assessed using the exponential decay models. All these methods were used to measure the angle in 659,313 representative waveforms of individual 10-s ECG samples and in 7,350,733 individual beats contained in the same 10-s samples. With all measurement methods, the measured angles fitted second-degree polynomial regressions to the underlying heart rate. Independent of the measurement method, the angles were found significantly narrower in females (p < 0.00001) with the differences to males between 10o and 20o, suggesting that in future risk-assessment studies, different angle dichotomies are needed for both sexes. The integrative method combined with SVD leads showed the highest intra-subject reproducibility (p < 0.00001). No reproducible delay between heart rate changes and QRS-T angle changes was found. This was interpreted as a suggestion that the measurement of QRS-T angle might offer direct assessment of cardiac autonomic responsiveness at the ventricular level.
- Klíčová slova
- ECG measurements, healthy volunteers, heart rate, heart rate hysteresis, long-term ECG, polynomial regression, sex differences, spatial QRS-T angle,
- Publikační typ
- časopisecké články MeSH
Increases in beat-to-beat variability of electrocardiographic QT interval duration have repeatedly been associated with increased risk of cardiovascular events and complications. The measurements of QT variability are frequently normalized for the underlying RR interval variability. Such normalization supports the concept of the so-called immediate RR effect which relates each QT interval to the preceding RR interval. The validity of this concept was investigated in the present study together with the analysis of the influence of electrocardiographic morphological stability on QT variability measurements. The analyses involved QT and RR measurements in 6,114,562 individual beats of 642,708 separate 10-s ECG samples recorded in 523 healthy volunteers (259 females). Only beats with high morphology correlation (r > 0.99) with representative waveforms of the 10-s ECG samples were analyzed, assuring that only good quality recordings were included. In addition to these high correlations, SDs of the ECG signal difference between representative waveforms and individual beats expressed morphological instability and ECG noise. In the intra-subject analyses of both individual beats and of 10-s averages, QT interval variability was substantially more strongly related to the ECG noise than to the underlying RR variability. In approximately one-third of the analyzed ECG beats, the prolongation or shortening of the preceding RR interval was followed by the opposite change of the QT interval. In linear regression analyses, underlying RR variability within each 10-s ECG sample explained only 5.7 and 11.1% of QT interval variability in females and males, respectively. On the contrary, the underlying ECG noise contents of the 10-s samples explained 56.5 and 60.1% of the QT interval variability in females and males, respectively. The study concludes that the concept of stable and uniform immediate RR interval effect on the duration of subsequent QT interval duration is highly questionable. Even if only stable beat-to-beat measurements of QT interval are used, the QT interval variability is still substantially influenced by morphological variability and noise pollution of the source ECG recordings. Even when good quality recordings are used, noise contents of the electrocardiograms should be objectively examined in future studies of QT interval variability.
- Klíčová slova
- ECG noise contents, QT variability, RR variability, healthy volunteers, immediate RR interval effect, long-term ECG, regression-based correction, short-term ECG measurements,
- Publikační typ
- časopisecké články MeSH
While it is now well-understood that the extent of QT interval changes due to underlying heart rate differences (i.e., the QT/RR adaptation) needs to be distinguished from the speed with which the QT interval reacts to heart rate changes (i.e., the so-called QT/RR hysteresis), gaps still exist in the physiologic understanding of QT/RR hysteresis processes. This study was designed to address the questions of whether the speed of QT adaptation to heart rate changes is driven by time or by number of cardiac cycles; whether QT interval adaptation speed is the same when heart rate accelerates and decelerates; and whether the characteristics of QT/RR hysteresis are related to age and sex. The study evaluated 897,570 measurements of QT intervals together with their 5-min histories of preceding RR intervals, all recorded in 751 healthy volunteers (336 females) aged 34.3 ± 9.5 years. Three different QT/RR adaptation models were combined with exponential decay models that distinguished time-based and interval-based QT/RR hysteresis. In each subject and for each modelling combination, a best-fit combination of modelling parameters was obtained by seeking minimal regression residuals. The results showed that the response of QT/RR hysteresis appears to be driven by absolute time rather than by the number of cardiac cycles. The speed of QT/RR hysteresis was found decreasing with increasing age whilst the duration of individually rate corrected QTc interval was found increasing with increasing age. Contrary to the longer QTc intervals, QT/RR hysteresis speed was faster in females. QT/RR hysteresis differences between heart rate acceleration and deceleration were not found to be physiologically systematic (i.e., they differed among different healthy subjects), but on average, QT/RR hysteresis speed was found slower after heart rate acceleration than after rate deceleration.
- Klíčová slova
- QT/RR adaptation, QT/RR hysteresis, age influence, best-fit models, healthy subjects, non-linear regression modelling, sex differences,
- Publikační typ
- časopisecké články MeSH
QT interval variability, mostly expressed by QT variability index (QTVi), has repeatedly been used in risk diagnostics. Physiologic correlates of QT variability expressions have been little researched especially when measured in short 10-second electrocardiograms (ECGs). This study investigated different QT variability indices, including QTVi and the standard deviation of QT interval durations (SDQT) in 657,287 10-second ECGs recorded in 523 healthy subjects (259 females). The indices were related to the underlying heart rate and to the 10-second standard deviation of RR intervals (SDRR). The analyses showed that both QTVi and SDQT (as well as other QT variability indices) were highly statistically significantly (p < 0.00001) influenced by heart rate and that QTVi showed poor intra-subject reproducibility (coefficient of variance approaching 200%). Furthermore, sequential analysis of regression variance showed that SDQT was more strongly related to the underlying heart rate than to SDRR, and that QTVi was influenced by the underlying heart rate and SDRR more strongly than by SDQT (p < 0.00001 for these comparisons of regression dependency). The study concludes that instead of QTVi, simpler expressions of QT interval variability, such as SDQT, appear preferable for future applications especially if multivariable combination with the underlying heart rate is used.
- Klíčová slova
- QT variability, QT variability index, RR variability, sequential analysis of regression variance, underlying heart rate,
- Publikační typ
- časopisecké články MeSH