Most cited article - PubMed ID 18759118
Morphological variability in selected heterocystous cyanobacterial strains as a response to varied temperature, light intensity and medium composition
Fourteen blue-green and green algae survived for widely different time periods ranging between 22-102 d in control culture medium. Irrespective of their long or short survival period in control cultures, their pro- or eukaryotic nature, their different morphological types or natural habitats, they all survived for a short time period ranging between 3-8 d in sewage water, 5-10 d in fertilizer factory effluent, (1/4)-2 d in brassica oil, (1/2)-2 d in phenol, 1-3 d in toluene, and 1-4 d in benzene (showing the relative toxicity of different chemicals to different algae, and the antialgal nature of brassica oil). Dilution decreased the toxicity of these agents very little, indicating that they all were very toxic to algae. None of the agent induced the formation of any reproductive or dormant cells. Sewage water, fertilizer factory effluent, brassica oil and/or benzene favored the formation of necridia cells in Phormidium bohneri, P. foveolarum, Microcoleus chthonoplastes, Lyngbya birgei, and L. major filaments. Scenedesmus quadricauda shed off all spines earlier, Hormidium flaccidum fragmented less or not at all, Scytonema millei formed no false branch and heterocyst, Aphanothece pallida and Gloeocapsa atrata cells did not divide, Cosmarium granatum cells did not form any zygospore and Oedogonium sp. not any oogonia-like cells under all or most of treatments with 25-100 % sewage water, 1-100 % fertilizer factory effluent, 1-100 % brassica oil, 25-100 % phenol, toluene and benzene.
- MeSH
- Benzene pharmacology MeSH
- Water Pollutants, Chemical pharmacology MeSH
- Chlorophyta drug effects physiology MeSH
- Phenol pharmacology MeSH
- Sewage analysis MeSH
- Organic Chemicals pharmacology MeSH
- Industrial Waste analysis MeSH
- Reproduction drug effects MeSH
- Spores drug effects physiology MeSH
- Toluene pharmacology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Benzene MeSH
- Water Pollutants, Chemical MeSH
- Phenol MeSH
- Sewage MeSH
- Organic Chemicals MeSH
- Industrial Waste MeSH
- Toluene MeSH
Physiological attributes of a set of cyanobacterial strains, isolated from the rhizosphere of wheat (var. HD 2687), identified as belonging to the genera Calothrix (n = 3), Westiellopsis (1), Hapalosiphon (2) and Nostoc (2), were axenized and evaluated. The concentrated culture filtrates of three cyanobacterial strains - C. ghosei, H. intricatus and Nostoc sp. were able to enhance germination percentage, radicle and coleoptile length in inhibition experiments with wheat seeds. Indole-3-acetic acid (IAA) production was recorded in light and dark (+0.5 % glucose) incubated cultures. Incubation in the presence of tryptophan significantly enhanced IAA production. Acetylene-reducing activity was higher in light incubated cultures of Nostoc sp. followed by C. ghosei, while in the dark, C. ghosei recorded highest values. TLC of the filtrates revealed the presence of several amino acids such as histidine, and auxin-like compounds. Co-culturing with selected strains recorded significant enhancement in plant chlorophyll. Root sections of wheat seedlings co-cultured with C. ghosei revealed the presence of short filaments inside the root hairs and cortical region. Such strains can be promising candidates for developing plant growth promoting associations for wheat crop, besides serving as model systems for understanding the metabolic interactions of cyanobacteria with host plant, such as wheat.
- MeSH
- Microscopy, Electron MeSH
- Plant Roots growth & development microbiology MeSH
- Indoleacetic Acids metabolism MeSH
- Triticum growth & development microbiology MeSH
- Soil Microbiology * MeSH
- Cyanobacteria isolation & purification physiology radiation effects ultrastructure MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- indoleacetic acid MeSH Browser
- Indoleacetic Acids MeSH