Most cited article - PubMed ID 18855751
Cholinesterase biosensor construction - a review
Biosensors are analytical devices being approachable for multiple analytes assay. Here, biosensors with intercepted acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) are presented as tool for assay of anticholinergic compounds such as pesticides, nerve agents and some natural toxins. Principle of assay is based on evaluation of cholinesterase activity and its pertinent decrease in presence of analyte. Nerve agents, pesticides, anticholinergic drugs useable for treatment of Alzheimer's disease as well as myasthenia gravis and aflatoxins are enlisted as compounds simply analyzable by cholinesterase biosensors.
- Keywords
- acetylcholinesterase, amperometry, biosensor, butyrylcholinesterase, carbamates, organophophates, organophosphonates,
- Publication type
- Journal Article MeSH
Cholinesterase activity in blood of laboratory rats was monitored. Rats were intoxicated with paraoxon at dosis of 0 - 65 - 125 - 170 - 250 - 500 nmol. The 250 nmol dose was found to be the LD(50). An electrochemical sensor was found useful to provide information about cholinesterase activity. The decrease of cholinesterase activity was correlated to intoxication symptoms and mortality level. It was found that the symptoms of intoxication are not observed while at least 50% of cholinesterase activity in blood remains. The minimal cholinesterase activity essential to survival is around 10%, when compared with the initial state. No changes in levels of low moleculary weight antioxidants were observed.
- Keywords
- acetylcholinesterase, activity, blood, butyrylcholinesterase, cholinesterase, intoxication, paraoxon, pesticide,
- Publication type
- Journal Article MeSH
An amperometric biosensor based on acetylcholinesterase (AChE) immobilized in gelatin was used to develop an assay for the organophosphate paraoxon. The more traditional manner employing preincubation was used for comparison between measurement procedures, although the aim of the study was to examine the performance of the biosensor for real time monitoring of organophosphates. The biosensor was immersed in a reaction chamber and paraoxon was injected inside. We were able to detect 200 pg of paraoxon within one minute or 2.5 ppb when the biosensor was preincubed in the sample solution for 15 minutes. The practical impact and expectations are discussed.
- Keywords
- Organophosphate, acetylcholinesterase, assay, biosensor, electrochemical, paraoxon,
- Publication type
- Journal Article MeSH
An electrochemical sensor is introduced as a tool applicable for diagnosis of intoxication by cholinesterase inhibitors caused by the well-known nerve agent VX. The traditional Ellman method was chosen for comparison with the sensor's analytical parameters. Both methods are based on estimation of blood cholinesterase inhibition as a marker of intoxication. While Ellman´s method provided a limit of detection of 5.2´10-7 M for blood containing VX, the electrochemical sensor was able to detect 4.0´10-7 M. Good correlation between both methods was observed (R = 0.92). The electrochemical sensor could be considered a convenient tool for a fast yet accurate method, easily available for field as well as laboratory use. Time and cost savings are key features of the sensor-based assay.
- Keywords
- Organophosphate, biosensor, carbamate, diagnosis, intoxication,
- Publication type
- Journal Article MeSH