Nejvíce citovaný článek - PubMed ID 19198003
Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/β-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.
- Klíčová slova
- Molecular neuro-oncology, PLAGL1, PLAGL2, Pediatric cancer,
- MeSH
- dítě MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- kojenec MeSH
- lidé MeSH
- metylace DNA MeSH
- nádorové supresorové proteiny genetika MeSH
- nádory centrálního nervového systému * genetika MeSH
- předškolní dítě MeSH
- primitivní neuroektodermové nádory * genetika MeSH
- proteiny buněčného cyklu genetika MeSH
- proteiny vázající RNA genetika MeSH
- signální dráha Wnt genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- nádorové supresorové proteiny MeSH
- PLAGL1 protein, human MeSH Prohlížeč
- PLAGL2 protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- proteiny vázající RNA MeSH
- transkripční faktory MeSH
In vitro human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes (CMs). Protocols for cardiac differentiation of hESCs and hiPSCs include formation of the three-dimensional cell aggregates called embryoid bodies (EBs). The traditional suspension method for EB formation from clumps of cells results in an EB population heterogeneous in size and shape. In this study we show that forced aggregation of a defined number of single cells on AggreWell plates gives a high number of homogeneous EBs that can be efficiently differentiated into functional CMs by application of defined growth factors in the media. For cardiac differentiation, we used three hESC lines and one hiPSC line. Our contracting EBs and the resulting CMs express cardiac markers, namely myosin heavy chain α and β, cardiac ryanodine receptor/calcium release channel, and cardiac troponin T, shown by real-time polymerase chain reaction and immunocytochemistry. Using Ca(2+) imaging and atomic force microscopy, we demonstrate the functionality of RyR2 to release Ca(2+) from the sarcoplasmic reticulum as well as reliability in contractile and beating properties of hESC-EBs and hiPSC-EBs upon the stimulation or inhibition of the β-adrenergic pathway.
- MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- embryoidní tělíska fyziologie MeSH
- indukované pluripotentní kmenové buňky fyziologie MeSH
- kardiomyocyty * cytologie fyziologie MeSH
- lidé MeSH
- reprodukovatelnost výsledků MeSH
- ryanodinový receptor vápníkového kanálu metabolismus MeSH
- sarkoplazmatické retikulum metabolismus MeSH
- těžké řetězce myosinu metabolismus MeSH
- troponin T metabolismus MeSH
- tvar buňky MeSH
- vápník metabolismus MeSH
- velikost buňky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ryanodinový receptor vápníkového kanálu MeSH
- těžké řetězce myosinu MeSH
- troponin T MeSH
- vápník MeSH