Most cited article - PubMed ID 19427375
Fungal nitrilases as biocatalysts: Recent developments
The application of arylacetonitrilases from filamentous fungi to the hydrolysis of high concentrations of (R,S)-mandelonitrile (100-500 mM) was demonstrated for the first time. Escherichia coli strains expressing the corresponding genes were used as whole-cell catalysts. Nitrilases from Aspergillus niger, Neurospora crassa, Nectria haematococca, and Arthroderma benhamiae (enzymes NitAn, NitNc, NitNh, and NitAb, respectively) exhibited different degrees of enantio- and chemoselectivity (amide formation). Their enantio- and chemoselectivity was increased by increasing pH (from 8 to 9-10) and adding 4-10% (v/v) toluene as the cosolvent. NitAn and NitNc were able to convert an up to 500 mM substrate in batch mode. NitAn formed a very low amount of the by-product, amide (<1% of the total product). This enzyme produced up to >70 g/L of (R)-mandelic acid (e.e. 94.5-95.6%) in batch or fed-batch mode. Its volumetric productivities were the highest in batch mode [571 ± 32 g/(L d)] and its catalyst productivities in fed-batch mode (39.9 ± 2.5 g/g of dcw). NitAb hydrolyzed both enantiomers of 100 mM (R,S)-mandelonitrile at pH 5.0 and is therefore promising for the enantioretentive transformation of (S)-mandelonitrile. Sequence analysis suggested that fungal arylacetonitrilases with similar properties (enantioselectivity, chemoselectivity) were clustered together.
- MeSH
- Aminohydrolases chemistry genetics metabolism MeSH
- Arthrodermataceae enzymology MeSH
- Aspergillus niger enzymology MeSH
- Species Specificity MeSH
- Fungal Proteins chemistry genetics metabolism MeSH
- Phylogeny MeSH
- Hydrogen-Ion Concentration MeSH
- Mandelic Acids metabolism MeSH
- Nectria enzymology MeSH
- Neurospora crassa enzymology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aminohydrolases MeSH
- Fungal Proteins MeSH
- Mandelic Acids MeSH
- mandelic acid MeSH Browser
BACKGROUND: Nitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult. RESULTS: A nitrilase gene was amplified by PCR from the cDNA library of Aspergillus niger K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in Escherichia coli BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzyme's native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val327 - Asn₃₅₆) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp₂₉₈-Val₃₁₃ peptide was shortened to Asp₂₉₈-Arg₃₁₀ in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution. CONCLUSIONS: The nitrilase from Aspergillus niger K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in Aspergillus and Penicillium genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by in vitro protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.
- MeSH
- Aminohydrolases biosynthesis genetics isolation & purification metabolism MeSH
- Aspergillus niger enzymology genetics MeSH
- Bacterial Proteins genetics isolation & purification metabolism MeSH
- Cloning, Molecular methods MeSH
- DNA, Complementary MeSH
- Molecular Sequence Data MeSH
- Polymerase Chain Reaction MeSH
- Scattering, Radiation MeSH
- Recombinant Proteins genetics isolation & purification metabolism MeSH
- Protein Folding MeSH
- Amino Acid Sequence MeSH
- Sequence Analysis, DNA MeSH
- Sequence Alignment MeSH
- Molecular Dynamics Simulation MeSH
- Enzyme Stability MeSH
- Light MeSH
- Publication type
- Journal Article MeSH
- Retracted Publication MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aminohydrolases MeSH
- Bacterial Proteins MeSH
- DNA, Complementary MeSH
- nitrilase MeSH Browser
- Recombinant Proteins MeSH