Nejvíce citovaný článek - PubMed ID 19505510
Effects of mGluR5 and mGluR1 antagonists on anxiety-like behavior and learning in developing rats
Status epilepticus (SE) is the most common neurologic emergency in children. Both clinical and laboratory studies have demonstrated that SE in early life can cause brain damage and permanent behavioral abnormalities, trigger epileptogenesis, and interfere with normal brain development. In experimental rodent models, the consequences of seizures are dependent upon age, the model used, and seizure duration. In studies involving neonatal and infantile animals, the model used, experimental design, conditions during the experiment, and manipulation of animals can significantly affect the course of the experiments as well as the results obtained. Standardization of laboratory approaches, harmonization of scientific methodology, and improvement in data collection can improve the comparability of data among laboratories.
- Klíčová slova
- animal models, comorbidites, immature rodent, status epilepticus,
- MeSH
- laboratorní zvířata MeSH
- modely nemocí na zvířatech MeSH
- mozek MeSH
- status epilepticus * MeSH
- záchvaty MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Clinical and experimental studies suggest possible risks associated with the repeated administration of benzodiazepines (BZDs) during the prenatal or early postnatal period on further development and behavior. In the present study, we assess short- and long-term effects of early exposure to clonazepam (CZP) on cognitive tasks. CZP (0.5 or 1.0 mg/kg/day) was administered from postnatal day (P)7 until P11, and animals were exposed to the following behavioral tests at different developmental stages: (1) a homing response (HR) test, which exploits the motivation of a rat pup to reach its home nest, was administered on P12, P15, P18 and P23 rats; (2) passive avoidance was tested in three trials (at 0, 2 and 24 h intervals) on P12, P15, P18, P25 and P32 rats; (3) within- and between-session habituation was tested in an open field (OF) at P70; and (4) a long-term memory (LTM) version of the Morris water maze (MWM) was tested at P80. A 1.0 mg/kg dose of CZP extended latency in the HR and decreased the number of correct responses when tested at P12 and P23. In the first trial of the passive avoidance test, latency to enter a dark compartment was shorter in the CZP-exposed rats. Both treated and control animals older than P15 learned the passive-avoidance response at the same rate. Irrespective of the treatments, all adult animals showed within-session habituation. Between-session habituation, however, was found only in the controls. With respect to the MWM test, all animals learned to reach the platform, but animals exposed to higher doses of CZP spent more time swimming in the first acquisition test. No difference between groups was found in a repeated acquisition test (10 and 40 days after the first acquisition test). The results of the present study show that even short-term exposure to CZP alters behavioral responsiveness in pre-weaning, juvenile and adult animals. Not only were changes observed on conventional cognitive tests in our study, but the changes also seem to be related to emotional/motivational responsiveness.
- Klíčová slova
- benzodiazepines, clonazepam, cognitive functions, development, rats,
- Publikační typ
- časopisecké články MeSH