Nejvíce citovaný článek - PubMed ID 19570132
Potential roles of melatonin and chronotherapy among the new trends in hypertension treatment
Lactacystin is a specific proteasome inhibitor that blocks the hydrolysis of intracellular proteins by ubiquitin/proteasome system inhibition. The administration of lactacystin to rats induced hypertension and remodeling of the left ventricle and aorta. This study tested whether lactacystin induces structural and fibrotic rebuilding of the kidneys and whether melatonin and captopril can prevent these potential changes. Six weeks of lactacystin administration to rats increased their average systolic blood pressure (SBP). In the kidneys, lactacystin reduced glomerular density, increased the glomerular tuft area, and enhanced hydroxyproline concentrations. It also elevated the intraglomerular proportion including the amounts of collagen (Col) I and Col III. Lactacystin also raised the tubulointerstitial amounts of Col I and the sum of Col I and Col III with no effect on vascular/perivascular collagen. Six weeks of captopril treatment reduced SBP, while melatonin had no effect. Both melatonin and captopril increased glomerular density, reduced the glomerular tuft area, and lowered the hydroxyproline concentration in the kidneys. Both drugs reduced the proportion and total amounts of intraglomerular and tubulointerstitial Col I and Col III. We conclude that chronic lactacystin treatment stimulated structural and fibrotic remodeling of the kidneys, and melatonin and captopril partly prevented these alterations. Considering the effect of lactacystin on both the heart and kidneys, chronic treatment with this drug may be a prospective model of cardiorenal damage suitable for testing pharmacological drugs as protective agents.
- Klíčová slova
- captopril, cardiorenal damage, fibrotic remodeling, kidney injury, lactacystin, melatonin,
- Publikační typ
- časopisecké články MeSH
The renin-angiotensin-aldosterone system (RAAS) is a dominant player in several cardiovascular pathologies. This study investigated whether alterations induced by l-NAME, (NLG)-nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor, and the protective effect of melatonin are associated with changes in the RAAS. Four groups of 3-month-old male Wistar rats (n = 10) were treated as follows for four weeks: untreated controls, rats treated with melatonin (10 mg/kg/day), rats treated with l-NAME (40 mg/kg/day), and rats treated with l-NAME + melatonin. l-NAME administration led to hypertension and left ventricular (LV) fibrosis in terms of enhancement of soluble, insoluble and total collagen concentration and content. Melatonin reduced systolic blood pressure enhancement and lowered the concentration and content of insoluble and total collagen in the LV. The serum concentration of angiotensin (Ang) 1-8 (Ang II) and its downstream metabolites were reduced in the l-NAME group and remained unaltered by melatonin. The serum aldosterone level and its ratio to Ang II (AA2-ratio) were increased in the l-NAME group without being modified by melatonin. We conclude that l-NAME-hypertension is associated with reduced level of Ang II and its downstream metabolites and increased aldosterone concentration and AA2-ratio. Melatonin exerts its protective effect in l-NAME-induced hypertension without affecting RAAS.
- Klíčová slova
- ">l-NAME, aldosterone, angiotensin 1–7, angiotensin II, fibrosis, melatonin,
- MeSH
- hypertenze * chemicky indukované metabolismus patofyziologie prevence a kontrola MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- melatonin farmakologie MeSH
- NG-nitroargininmethylester škodlivé účinky farmakologie MeSH
- potkani Wistar MeSH
- renin-angiotensin systém účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- melatonin MeSH
- NG-nitroargininmethylester MeSH