Nejvíce citovaný článek - PubMed ID 20021734
Analysis of in vitro and in vivo characteristics of human embryonic stem cell-derived neural precursors
The burden of neurodegenerative disorders in an aging population has become a challenge for the modern world. While the biomarkers available and the methods of diagnosis have improved to detect the onset of these diseases at early stages, the question of adapted and efficient therapies is still a major issue. The prospect of replacing the loss of functional neural cells remains an attractive but still audacious approach. A huge progress has been made in the generation of neurons derived from human stem cell lines and transplantation assays are tested in animals for a wide range of pathologies of the central nervous system. Here we take one step back and examine neuronal differentiation and the characterization of neural progenitors derived from human embryonic stem cells. We gather results from our previous studies and present a cell model that was successfully used in functional analyses and engraftment experiments. These neuronal precursors exhibit spontaneous and evoked activity, indicating that their electrophysiological and calcium handling properties are similar to those of matured neurons. Hence this summarized information will serve as a basis to design better stem cell-based therapies to improve neural regeneration.
- Klíčová slova
- calcium signaling, human embryonic stem cell, immortalized stem cell lines, ion channels, neural precursors, neurodegenerative diseases, spinal cord,
- Publikační typ
- časopisecké články MeSH
Human embryonic stem cell-derived neural precursors (hESC NPs) are considered to be a promising tool for cell-based therapy in central nervous system injuries and neurodegenerative diseases. The Ca(2+) ion is an important intracellular messenger essential for the regulation of various cellular functions. We investigated the role and physiology of Ca(2+) signaling to characterize the functional properties of CCTL14 hESC NPs during long-term maintenance in culture (in vitro). We analyzed changes in cytoplasmic Ca(2+) concentration ([Ca(2+)]i) evoked by high K(+), adenosine-5'-triphosphate (ATP), glutamate, γ-aminobutyric acid (GABA), and caffeine in correlation with the expression of various neuronal markers in different passages (P6 through P10) during the course of hESC differentiation. We found that only differentiated NPs from P7 exhibited significant and specific [Ca(2+)]i responses to various stimuli. About 31% of neuronal-like P7 NPs exhibited spontaneous [Ca(2+)]i oscillations. Pharmacological and immunocytochemical assays revealed that P7 NPs express L- and P/Q-type Ca(2+) channels, P2X2, P2X3, P2X7, and P2Y purinoreceptors, glutamate receptors, and ryanodine (RyR1 and RyR3) receptors. The ATP- and glutamate-induced [Ca(2+)]i responses were concentration-dependent. Higher glutamate concentrations (over 100 μM) caused cell death. Responses to ATP were observed in the presence or in the absence of extracellular Ca(2+). These results emphasize the notion that with time in culture, these cells attain a transient period of operative Ca(2+) signaling that is predictive of their ability to act as stem elements.
- MeSH
- biologické markery metabolismus MeSH
- buněčná diferenciace účinky léků MeSH
- časové faktory MeSH
- embryonální kmenové buňky cytologie účinky léků metabolismus MeSH
- glutamáty farmakologie MeSH
- intracelulární prostor účinky léků metabolismus MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- nervové kmenové buňky cytologie účinky léků metabolismus MeSH
- počet buněk MeSH
- purinergní receptory metabolismus MeSH
- vápník metabolismus MeSH
- vápníková signalizace * účinky léků MeSH
- vápníkové kanály metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- glutamáty MeSH
- purinergní receptory MeSH
- vápník MeSH
- vápníkové kanály MeSH
BACKGROUND: A number of cardiovascular, neurological, musculoskeletal and other diseases have a limited capacity for repair and only a modest progress has been made in treatment of brain diseases. The discovery of stem cells has opened new possibilities for the treatment of these maladies, and cell therapy now stands at the cutting-edge of modern regenerative medicine and tissue engineering. Experimental data and the first clinical trials employing stem cells have shown their broad therapeutic potential and have brought hope to patients suffering from devastating pathologies of different organs and systems. AIMS: Here, we briefly review the main achievements and trends in cell-based therapy, with an emphasis on the main types of stem cells: embryonic, mesenchymal stromal and induced pluripotent cells. DISCUSSION: Many questions regarding the application of stem cells remain unanswered, particularly tumorigenicity, immune rejection and danger of gene manipulation. Currently, only MSC seems to be safe and might be considered to be a leading candidate for human application to treat pathologies that affect the cardiovascular, neurological and musculoskeletal systems.
- Klíčová slova
- Clinical Trials, Embryonic Stem Cells, Induced Pluripotent Stem Cells, Mesenchymal Stromal Cells, PACS: 87.19.L-; 87.19.LW, Stem Cells,
- Publikační typ
- časopisecké články MeSH