Nejvíce citovaný článek - PubMed ID 20085626
Identification and characterization of repetitive extragenic palindromes (REP)-associated tyrosine transposases: implications for REP evolution and dynamics in bacterial genomes
Solution and crystal data are reported for DNA 18-mers with sequences related to those of bacterial noncoding single-stranded DNA segments called repetitive extragenic palindromes (REPs). Solution CD and melting data showed that the CG-rich, near-palindromic REPs from various bacterial species exhibit dynamic temperature-dependent and concentration-dependent equilibria, including architectures compatible with not only hairpins, which are expected to be biologically relevant, but also antiparallel duplexes and bimolecular tetraplexes. Three 18-mer oligonucleotides named Hpar-18 (PDB entry 6rou), Chom-18 (PDB entry 6ros) and its brominated variant Chom-18Br (PDB entry 6ror) crystallized as isomorphic right-handed A-like duplexes. The low-resolution crystal structures were solved with the help of experimental phases for Chom-18Br. The center of the duplexes is formed by two successive T-T noncanonical base pairs (mismatches). They do not deform the double-helical geometry. The presence of T-T mismatches prompted an analysis of the geometries of these and other noncanonical pairs in other DNA crystals in terms of their fit to the experimental electron densities (RSCC) and their geometric fit to the NtC (dinucleotide conformational) classes (https://dnatco.datmos.org/). Throughout this work, knowledge of the NtC classes was used to refine and validate the crystal structures, and to analyze the mismatches.
- Klíčová slova
- CD spectra, DNA structure, REPs, T–T mismatch, crystal structure, noncanonical base pairs, repetitive extragenic palindromes,
- MeSH
- Cardiobacterium genetika MeSH
- DNA bakterií chemie MeSH
- Haemophilus parasuis genetika MeSH
- molekulární modely MeSH
- molekulární struktura * MeSH
- nukleotidové motivy * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
Repetitive extragenic palindrome (REP)-associated tyrosine transposase enzymes (RAYTs) bind REP DNA domains and catalyze their cleavage. Genomic sequence analyses identify potential noncoding REP sequences associated with RAYT-encoding genes. To probe the conformational space of potential RAYT DNA binding domains, we report here spectroscopic and calorimetric measurements that detect and partially characterize the solution conformational heterogeneity of REP oligonucleotides from six bacterial species. Our data reveal most of these REP oligonucleotides adopt multiple conformations, suggesting that RAYTs confront a landscape of potential DNA substrates in dynamic equilibrium that could be selected, enriched, and/or induced via differential binding. Thus, the transposase-bound DNA motif may not be the predominant conformation of the isolated REP domain. Intriguingly, for several REPs, the circular dichroism spectra suggest guanine tetraplexes as potential alternative or additional RAYT recognition elements, an observation consistent with these REP domains being highly nonrandom, with tetraplex-favoring 5'-G and 3'-C-rich segments. In fact, the conformational heterogeneity of REP domains detected and reported here, including the formation of noncanonical DNA secondary structures, may reflect a general feature required for recognition by RAYT transposases. Based on our biophysical data, we propose guanine tetraplexes as an additional DNA recognition element for binding by RAYT transposase enzymes.
- Klíčová slova
- REP associated tyrosine transposases (RAYTs), bacterial repetitive extragenic palindromes (REP), circular dichroism spectroscopy, interstrand guanine tetraplex, landscape of RAYT DNA recognition elements,
- MeSH
- DNA bakterií chemie metabolismus MeSH
- jednovláknová DNA chemie metabolismus MeSH
- obrácené repetice genetika MeSH
- transposasy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- jednovláknová DNA MeSH
- transposasy MeSH
BACKGROUND: Repetitive extragenic palindromic elements (REPs) constitute a group of bacterial genomic repeats known for their high abundance and several roles in host cells´ physiology. We analyzed the phylogenetic distribution of particular REP classes in genomic sequences of sixty-three bacterial strains belonging to the Pseudomonas fluorescens species complex and ten strains of Stenotrophomonas sp., in order to assess intraspecific REP diversity and to gain insight into long-term REP evolution. RESULTS: Based on proximity to RAYT (REP-associated tyrosine transposase) genes, twenty-two and thirteen unique REP classes were determined in fluorescent pseudomonads and stenotrophomonads, respectively. In stenotrophomonads, REP elements were typically found in tens or a few hundred copies per genome. REPs of fluorescent pseudomonads were generally more numerous, occurring in hundreds or even over a thousand perfect copies of particular REP class per genome. REP sequences showed highly heterogeneous distribution. The abundances of REP classes roughly followed host strains´ phylogeny, differing markedly among individual clades. High abundances of particular REP classes appeared to depend on the presence of the cognate RAYT gene, and deviations from this state could be attributed to recent or ancient mutations of rayt-flanking REPs, or RAYT loss. RAYTs of both studied bacterial groups are monophyletic, and their cognate REPs show species-specific characteristics, suggesting shared evolutionary history of REPs, RAYTs and their hosts. CONCLUSIONS: The results of our large-scale analysis show that REP elements constitute intriguingly dynamic components of genomes of fluorescent pseudomonads and stenotrophomonads, and indicate that REP diversification and proliferation are ongoing processes. High numbers of REPs have apparently been retained during the entire evolutionary time since the establishment of these two bacterial lineages, probably because of their beneficial effect on host long-term fitness. REP elements in these bacteria represent a suitable platform to study the interplay between repeated elements, their mobilizers and host bacterial cells.
- MeSH
- fylogeneze MeSH
- genetická variace genetika MeSH
- genom bakteriální genetika MeSH
- molekulární evoluce * MeSH
- obrácené repetice genetika MeSH
- Pseudomonas enzymologie genetika MeSH
- transposasy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- transposasy MeSH