Nejvíce citovaný článek - PubMed ID 2026269
Subsite specificity of the proteinase from myeloblastosis associated virus
All retroviral proteases belong to the family of aspartic proteases. They are active as homodimers, each unit contributing one catalytic aspartate to the active site dyad. An important feature of all aspartic proteases is a conserved complex scaffold of hydrogen bonds supporting the active site, called the "fireman's grip," which involves the hydroxyl groups of two threonine (serine) residues in the active site Asp-Thr(Ser)-Gly triplets. It was shown previously that the fireman's grip is indispensable for the dimer stability of HIV protease. The retroviral proteases harboring Ser in their active site triplet are less active and, under natural conditions, are expressed in higher enzyme/substrate ratio than those having Asp-Thr-Gly triplet. To analyze whether this observation can be attributed to the different influence of Thr or Ser on dimerization, we prepared two pairs of the wild-type and mutant proteases from HIV and myeloblastosis-associated virus harboring either Ser or Thr in their Asp-Thr(Ser)-Gly triplet. The equilibrium dimerization constants differed by an order of magnitude within the relevant pairs. The proteases with Thr in their active site triplets were found to be approximately 10 times more thermodynamically stable. The dimer association contributes to this difference more than does the dissociation. We propose that the fireman's grip might be important in the initial phases of dimer formation to help properly orientate the two subunits of a retroviral protease. The methyl group of threonine might contribute significantly to fixing such an intermediate conformation.
- MeSH
- algoritmy MeSH
- aspartátové endopeptidasy chemie genetika metabolismus MeSH
- bodová mutace genetika MeSH
- dimerizace MeSH
- fluorescenční barviva metabolismus MeSH
- HIV-proteasa chemie genetika metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- molekulární modely MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- Retroviridae - proteiny chemie genetika metabolismus MeSH
- serin chemie genetika MeSH
- stabilita enzymů genetika MeSH
- substrátová specifita MeSH
- threonin chemie genetika MeSH
- vazebná místa genetika MeSH
- vodíková vazba MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aspartátové endopeptidasy MeSH
- fluorescenční barviva MeSH
- HIV-proteasa MeSH
- protease p15 MeSH Prohlížeč
- rekombinantní proteiny MeSH
- Retroviridae - proteiny MeSH
- serin MeSH
- threonin MeSH
In an attempt to understand the structural reasons for differences in specificity and activity of proteinases from two retroviruses encoded by human immunodeficiency virus (HIV) and myeloblastosis associated virus (MAV), we mutated five key residues predicted to form part of the enzyme subsites S1, S2 and S3 in the substrate binding cleft of the wild-type MAV proteinase wMAV PR. These were changed to the residues occupying a similar or identical position in the HIV-1 enzyme. The resultant mutated MAV proteinase (mMAV PR) exhibits increased enzymatic activity, altered substrate specificity, a substantially changed pH activity profile and a higher pH stability close to that observed in the HIV-1 PR. This dramatic alteration of MAV PR activity achieved by site-directed mutagenesis suggests that we have identified the amino acid residues contributing substantially to the differences between MAV and HIV-1 proteinases.
- MeSH
- endopeptidasy genetika metabolismus MeSH
- HIV-proteasa genetika metabolismus MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- konformace proteinů MeSH
- molekulární sekvence - údaje MeSH
- mutageneze cílená MeSH
- proteinové inženýrství MeSH
- Retroviridae enzymologie MeSH
- sekvence aminokyselin MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- endopeptidasy MeSH
- HIV-proteasa MeSH