Nejvíce citovaný článek - PubMed ID 20307965
In this study, a highly sensitive, fast, and selective enzyme-free electrochemical sensor based on the deposition of Ni cavities on conductive glass was proposed for insulin detection. Considering the growing prevalence of diabetes mellitus, an electrochemical sensor for the determination of insulin was proposed for the effective diagnosis of the disease. Colloidal lithography enabled deposition of nanostructured layer (substrate) with homogeneous distribution of Ni cavities on the electrode surface with a large active surface area. The morphology and structure of conductive indium tin oxide glass modified with Ni cavities (Ni-c-ITO) were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The diameter of the resulting cavities was approximately 500 nm, while their depth was calculated at 190 ± 4 nm and 188 ± 18 nm using AFM and SEM, respectively. The insulin assay performance was evaluated by cyclic voltammetry. Ni-c-ITO exhibited excellent analytical characteristics, including high sensitivity (1.032 µA µmol-1 dm3), a low detection limit (156 µmol dm-3), and a wide dynamic range (500 nmol dm-3 to 10 µmol dm-3). Finally, the determination of insulin in buffer with interferents and in real blood serum samples revealed high specificity and demonstrated the practical potential of the method.
- MeSH
- biosenzitivní techniky * metody MeSH
- elektrochemické techniky metody MeSH
- elektrody MeSH
- inzulin MeSH
- nanostruktury * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inzulin MeSH
Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to -1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL-1 was obtained.
- Klíčová slova
- carbon, cyclic voltammetry, electrochemical impedance spectroscopy, electrochemistry, graphene oxide, heavy metal detection, reduced graphene oxide,
- Publikační typ
- časopisecké články MeSH