Nejvíce citovaný článek - PubMed ID 20512154
We use quantum-mechanical calculations to test a hypothesis of Glover et al. (J. Mag. Mag. Mater. 15 (1980) 699) that Co atoms in the Fe 2 AlCo compound have on average 3 Fe and 3 Co atoms in their second nearest neighbor shell. We have simulated four structural configurations of Fe 2 AlCo including the full Heusler structure, inverse Heusler polymorph and two other phases matching this idea. The highest thermodynamic stability at T = 0 K is indeed predicted for one of the phases with the distribution of atoms according to Glover and et al. However, small energy differences among three of the studied polymorphs lead to a disordered CsCl-structure-like (B2-like) phase at elevated temperatures. The fourth variant, the full Heusler phase, is predicted to be mechanically unstable. The global magnetic states are predicted to be ferromagnetic but local magnetic moments of Fe and Co atoms sensitively depend on the composition of the first and second coordination shells.
It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phase transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 10(6) m s(-1) remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe.