Nejvíce citovaný článek - PubMed ID 20572300
Small intestinal bacterial overgrowth syndrome
Gastrointestinal side effects of donepezil, including dyspepsia, nausea, vomiting or diarrhea, occur in 20-30% of patients. The pathogenesis of these dysmotility associated disorders has not been fully clarified yet. Pharmacokinetic parameters of donepezil and its active metabolite 6-O-desmethyldonepezil were investigated in experimental pigs with and without small intestinal injury induced by dextran sodium sulfate (DSS). Morphological features of this injury were evaluated by a video capsule endoscopy. The effect of a single and repeated doses of donepezil on gastric myoelectric activity was assessed. Both DSS-induced small intestinal injury and prolonged small intestinal transit time caused higher plasma concentrations of donepezil in experimental pigs. This has an important implication for clinical practice in humans, with a need to reduce doses of the drug if an underlying gastrointestinal disease is present. Donepezil had an undesirable impact on porcine myoelectric activity. This effect was further aggravated by DSS-induced small intestinal injury. These findings can explain donepezil-associated dyspepsia in humans.
- Klíčová slova
- 6-O-desmethyldonepezil, dextran sodium sulfate, donepezil, electrogastrography, experimental pigs, gastric myoelectric activity, organ distribution, pharmacokinetics, video capsule enteroscopy,
- MeSH
- donepezil chemie farmakokinetika farmakologie MeSH
- gastrointestinální trakt účinky léků patologie patofyziologie MeSH
- indany metabolismus MeSH
- kapslová endoskopie MeSH
- metabolom * účinky léků MeSH
- migrující myoelektrický komplex * účinky léků MeSH
- piperidiny metabolismus MeSH
- prasata MeSH
- síran dextranu MeSH
- žaludek účinky léků patofyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 6-O-desmethyl donepezil MeSH Prohlížeč
- donepezil MeSH
- indany MeSH
- piperidiny MeSH
- síran dextranu MeSH
The change in the gut microbiome and microbial metabolites in a patient suffering from severe and enduring anorexia nervosa (AN) and diagnosed with small intestinal bacterial overgrowth syndrome (SIBO) was investigated. Microbial gut dysbiosis is associated with both AN and SIBO, and therefore gut microbiome changes by serial fecal microbiota transplantation (FMT) is a possible therapeutic modality. This study assessed the effects of FMT on gut barrier function, microbiota composition, and the levels of bacterial metabolic products. The patient treatment with FMT led to the improvement of gut barrier function, which was altered prior to FMT. Very low bacterial alpha diversity, a lack of beneficial bacteria, together with a great abundance of fungal species were observed in the patient stool sample before FMT. After FMT, both bacterial species richness and gut microbiome evenness increased in the patient, while the fungal alpha diversity decreased. The total short-chain fatty acids (SCFAs) levels (molecules presenting an important source of energy for epithelial gut cells) gradually increased after FMT. Contrarily, one of the most abundant intestinal neurotransmitters, serotonin, tended to decrease throughout the observation period. Overall, gut microbial dysbiosis improvement after FMT was considered. However, there were no signs of patient clinical improvement. The need for an in-depth analysis of the donor´s stool and correct selection pre-FMT is evident.
AIM: To evaluate bacteriocinogeny in short-term high-dose indomethacin administration with or without probiotic Escherichia coli Nissle 1917 (EcN) in experimental pigs. METHODS: Twenty-four pigs entered the study: Group A (controls), Group B (probiotics alone), Group C (indomethacin alone) and Group D (probiotics and indomethacin). EcN (3.5×10(10) bacteria/d for 14 d) and/or indomethacin (15 mg/kg per day for 10 d) were administrated orally. Anal smears before and smears from the small and large intestine were taken from all animals. Bacteriocin production was determined with 6 different indicator strains; all strains were polymerase chain reaction tested for the presence of 29 individual bacteriocin-encoding determinants. RESULTS: The general microbiota profile was rather uniform in all animals but there was a broad diversity in coliform bacteria (parallel genotypes A, B1, B2 and D found). In total, 637 bacterial strains were tested, mostly Escherichia coli (E. coli). There was a higher incidence of non-E. coli strains among samples taken from the jejunum and ileum compared to that of the colon and rectum indicating predominance of E. coli strains in the large intestine. Bacteriocinogeny was found in 24/77 (31%) before and in 155/560 (28%) isolated bacteria at the end of the study. Altogether, 13 individual bacteriocin types (out of 29 tested) were identified among investigated strains. Incidence of four E. coli genotypes was equally distributed in all groups of E. coli strains, with majority of genotype A (ranging from 81% to 88%). The following types of bacteriocins were most commonly revealed: colicins Ia/Ib (44%), microcin V (18%), colicin E1 (16%) and microcin H47 (6%). There was a difference in bacteriocinogeny between control group A (52/149, 35%) and groups with treatment at the end of the study: B: 31/122 (25%, P=0.120); C: 43/155 (28%, P=0.222); D: 29/134 (22%, P=0.020). There was a significantly lower prevalence of colicin Ib, microcins H47 and V (probiotics group, P<0.001), colicin E1 and microcin H47 (indomethacin group, P<0.001) and microcins H47 and V (probiotics and indomethacin group, P=0.025) compared to controls. Escherichia fergusonii (E. fergusonii) was identified in 6 animals (6/11 isolates from the rectum). One strain was non-colicinogenic, while all other strains of E. fergusonii solely produced colicin E1. All animals started and remained methanogenic despite the fact that EcN is a substantial hydrogen producer. There was an increase in breath methane (after the treatment) in 5/6 pigs from the indomethacin group (C). CONCLUSION: EcN did not exert long-term liveability in the porcine intestine. All experimental pigs remained methanogenic. Indomethacin and EcN administered together might produce the worst impact on bacteriocinogeny.
- Klíčová slova
- Bacteriocinogeny, Escherichia coli Nissle 1917, Experimental pigs, Indomethacin,
- MeSH
- antiflogistika nesteroidní škodlivé účinky farmakologie MeSH
- bakteriociny metabolismus MeSH
- dechové testy MeSH
- Escherichia coli metabolismus MeSH
- indomethacin škodlivé účinky farmakologie MeSH
- lidé MeSH
- metagenom MeSH
- methan metabolismus MeSH
- probiotika farmakologie MeSH
- střevní sliznice účinky léků mikrobiologie MeSH
- Sus scrofa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- bakteriociny MeSH
- indomethacin MeSH
- methan MeSH