Most cited article - PubMed ID 20943178
Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales)
Fungi of the genus Geosmithia are frequently associated with bark beetles that feed on phloem on various woody hosts. Most studies on Geosmithia were carried out in North and South America and Europe, with only two species being reported from Taiwan, China. This study aimed to investigate the diversity of Geosmithia species in China. Field surveys in Fujian, Guangdong, Guangxi, Hunan, Jiangsu, Jiangxi, Shandong, Shanghai, and Yunnan yielded a total of 178 Geosmithia isolates from 12 beetle species. The isolates were grouped based on morphology. The internal transcribed spacer, β-tubulin, and elongation factor 1-α gene regions of the representatives of each group were sequenced. Phylogenetic trees were constructed based on those sequences. In total, 12 species were identified, with three previously described species (Geosmithia xerotolerans, G. putterillii, and G. pallida) and nine new species which are described in this paper as G. luteobrunnea, G. radiata, G. brevistipitata, G. bombycina, G. granulata (Geosmithia sp. 20), G. subfulva, G. pulverea (G. sp. 3 and Geosmithia sp. 23), G. fusca, and G. pumila sp. nov. The dominant species obtained in this study were G. luteobrunnea and G. pulverea. This study systematically studied the Geosmithia species in China and made an important contribution to filling in the gaps in our understanding of global Geosmithia species diversity.
- Keywords
- 9 new taxa, Geosmithia, bark beetles, fungal community, symbiosis,
- Publication type
- Journal Article MeSH
Geosmithia species (Hypocreales, Ascomycota) are associates of bark beetles and other arthropods. One species, Geosmithia morbida, is a virulent tree pathogen of Juglans nigra. To date, 10 Geosmithia spp. from conifer-infesting, and at least 23 species from hardwood associated bark beetles have been reported from Europe. The aim of this study was to survey Geosmithia spp. associated with 18 bark and ambrosia beetle species in hardwood ecosystems in Poland. In addition, we evaluated the pathogenicity of the six Geosmithia species by inoculating Acer, Fagus, Quercus, Tilia and Ulmus seedlings. Our surveys yielded a total of 1060 isolates from 2915 beetles and 1887 galleries. We identified isolates using morphology and ITS, β-tubulin and TEF1-α sequences. Altogether we identified 11 species including nine previously known and two new species described here as Geosmithia fagi sp. nov. and G. pazoutovae sp. nov. In addition, a sister species G. longistipitata sp. nov., associated with Picea trees, is described here. Bark beetles from hardwoods, with exeption of Dryocoetes alni, D. villosus, Scolytus ratzeburgi and ambrosia beetles, appear to be regular vectors of Geosmithia spp. Like in other parts of the world, most Geosmithia taxa exhibited a distinct level of vector/host specificity. None of Geosmithia isolates induced any disease symptoms under the conditions of our experiment. This study highlights the need for more intensive surveys across additional areas of Central and Northern Europe, insect vectors and host tree species in order to elucidate the Geosmithia species diversity in this region.
- Keywords
- 3 New Taxa, Ambrosia beetle, Bark beetle, Geosmithia, Hardwoods, Pathogenicity,
- MeSH
- Ambrosia MeSH
- Coleoptera * MeSH
- Ecosystem MeSH
- Phylogeny MeSH
- Hypocreales * MeSH
- Plant Bark MeSH
- Weevils * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Poland MeSH
Comparative ecophysiology is highly valuable approach to reveal adaptive traits linked with specific ecological niches. Although long-term in vitro preserved fungal isolates are often used for analyses, only sparse data is available about the effect of such handling on fungal physiology. The purpose of our data is to show the effect of long-term in vitro preservation of fungal strains on their metabolic profiles. This data is related to research paper "Adaptive traits of bark and ambrosia beetle-associated fungi" (Veselská et al., 2019). Biolog MicroPlates™ for Filamentous fungi were used to compare metabolic profiles between freshly isolated and long-term in vitro preserved strains of two Geosmithia species. Additionally, carbon utilization profiles of 35 Geosmithia species were assessed, including plant pathogen G. morbida and three ambrosia species. Data also shows differences in carbon utilization profiles among diverse ecology types presented in the genus Geosmithia.
- Keywords
- Biolog microarray, Comparative ecophysiology, Fungal physiology, Fungi, In vitro preservation, Metabolic profile,
- Publication type
- Journal Article MeSH
Fungi from the genus Geosmithia (Ascomycota: Hypocreales) are associated with bark beetles (Coleoptera: Scolytinae), though little is known about ecology, diversity, and distribution of these fungi across beetle and its host tree species. This study surveyed the diversity, distribution and vector affinity of Geosmithia isolated from subcortical insects that colonized trees from the family Pinaceae in Central and Northeastern Europe. Twelve Geosmithia species were isolated from 85 plant samples associated with 23 subcortical insect species (including 14 bark beetle species). Geosmithia community composition was similar across different localities and vector species; although the fungal communities associated with insects that colonized Pinus differed from that colonizing other tree species (Abies, Larix, and Picea). Ten Geosmithia species from four independent phylogenetic lineages were not reported previously from vectors feeding on other plant families and seem to be restricted to the vectors from Pinaceae only. We conclude that presence of such substrate specificity suggests a long and stable association between Geosmithia and bark beetles.
- MeSH
- Biodiversity * MeSH
- Pinaceae classification microbiology parasitology MeSH
- Coleoptera classification microbiology MeSH
- Phylogeny MeSH
- Insect Vectors microbiology MeSH
- Host Specificity MeSH
- Hypocreales classification genetics isolation & purification physiology MeSH
- Molecular Sequence Data MeSH
- Plant Diseases microbiology parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH