Geosmithia Species Associated With Bark Beetles From China, With the Description of Nine New Species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35369427
PubMed Central
PMC8964297
DOI
10.3389/fmicb.2022.820402
Knihovny.cz E-zdroje
- Klíčová slova
- 9 new taxa, Geosmithia, bark beetles, fungal community, symbiosis,
- Publikační typ
- časopisecké články MeSH
Fungi of the genus Geosmithia are frequently associated with bark beetles that feed on phloem on various woody hosts. Most studies on Geosmithia were carried out in North and South America and Europe, with only two species being reported from Taiwan, China. This study aimed to investigate the diversity of Geosmithia species in China. Field surveys in Fujian, Guangdong, Guangxi, Hunan, Jiangsu, Jiangxi, Shandong, Shanghai, and Yunnan yielded a total of 178 Geosmithia isolates from 12 beetle species. The isolates were grouped based on morphology. The internal transcribed spacer, β-tubulin, and elongation factor 1-α gene regions of the representatives of each group were sequenced. Phylogenetic trees were constructed based on those sequences. In total, 12 species were identified, with three previously described species (Geosmithia xerotolerans, G. putterillii, and G. pallida) and nine new species which are described in this paper as G. luteobrunnea, G. radiata, G. brevistipitata, G. bombycina, G. granulata (Geosmithia sp. 20), G. subfulva, G. pulverea (G. sp. 3 and Geosmithia sp. 23), G. fusca, and G. pumila sp. nov. The dominant species obtained in this study were G. luteobrunnea and G. pulverea. This study systematically studied the Geosmithia species in China and made an important contribution to filling in the gaps in our understanding of global Geosmithia species diversity.
College of Life Sciences Shandong Normal University Jinan China
College of Plant Protection Fujian Agriculture and Forestry University Fuzhou China
Institute of Microbiology Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Borowski T. (2021). World inventory of beetles of the family Bostrichidae (Coleoptera). Part 2. Check list from 1758 to 2007. World News Nat. Sci. 36 9–41.
Crous P. W., Luangsa-Ard J. J., Wingfield M. J., Carnegie A. J., Hernández-Restrepo M., Lombard L., et al. (2018). Fungal Planet description sheets: 785-867. Persoonia 41 238–417. 10.3767/persoonia.2018.41.12 PubMed DOI PMC
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772. 10.1038/nmeth.2109 PubMed DOI PMC
Deka D., Jha D. K. (2018). Optimization of culture parameters for improved production of bioactive metabolite by endophytic Geosmithia pallida (KU693285) isolated from Brucea mollis Wall ex. Kurz, an endangered medicinal plant. J. Pure Appl. Microbiol. 12 1205–1213. 10.22207/jpam.12.3.21 DOI
Dori-Bachash M., Avrahami-Moyal L., Protasov A., Mendel Z., Freeman S. (2015). The occurrence and pathogenicity of Geosmithia spp. and common blue-stain fungi associated with pine bark beetles in planted forests in Israel. Eur. J. Plant Pathol. 143, 627–639.
Gao L., Cognato A. I. (2018). Acanthotomicus suncei, a new sweetgum tree pest in China (Coleoptera: Curculionidae: Scolytinae: Ipini). Zootaxa 447 595–599. 10.11646/zootaxa.4471.3.12 PubMed DOI
Gao L., Li Y., Wang Z.-X., Zhao J., Hulcr J., Wang J.-G., et al. (2021). Biology and associated fungi of an emerging bark beetle pest, the sweetgum inscriber Acanthotomicus suncei (Coleoptera: Curculionidae). J. Pure Appl. Microbiol. 145 508–517. 10.1111/jen.12861 DOI
Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol. Ecol. 2 113–118. 10.1111/j.1365-294X.1993.tb00005.x PubMed DOI
Glass N. L., Donaldson G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microb. 61 1323–1330. 10.1128/aem.61.4.1323-1330.1995 PubMed DOI PMC
Grum-Grzhimaylo A. A., Georgieva M. L., Debets A. J., Bilanenko E. N. (2013). Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin? IMA fungus 4, 213–228. 10.5598/imafungus.2013.04.02.07 PubMed DOI PMC
Hamelin R., Tanguay P., Uzunovic A., Seifert K. (2013). Molecular Detection Assays of Forest Pathogens. Sault Ste. Marie, ON: Canadian Forest Service, Natural Resources Canada.
Hishinuma S. M., Dallara P. L., Yaghmour M. A., Zerillo M. M., Parker C. M., Roubtsova T. V., et al. (2015). Wingnut (Juglandaceae) as a new generic host for Pityophthorus juglandis (Coleoptera: Curculionidae) and the thousand cankers disease pathogen, Geosmithia morbida (Ascomycota: Hypocreales). Can. Entomol. 148 83–91. 10.4039/tce.2015.37 DOI
Huang Y. T., Kolařík M., Kasson M. T., Hulcr J. (2017). Two new Geosmithia species in G. pallida species complex from bark beetles in eastern USA. Mycologia 109 790–803. 10.1080/00275514.2017.1410422 PubMed DOI
Huang Y.-T., Skelton J., Johnson A. J., Kolařík M., Hulcr J. (2019). Geosmithia species in southeastern USA and their affinity to beetle vectors and tree hosts. Fungal Ecol. 39 168–183. 10.1016/j.funeco.2019.02.005 DOI
Jankowiak R., Kolařík M., Bilański P. (2014). Association of Geosmithia fungi (Ascomycota: Hypocreales) with pine- and spruce-infesting bark beetles in Poland. Fungal Ecol. 11 71–79. 10.1016/j.funeco.2014.04.002 DOI
Juzwik J., Banik M. T., Reed S. E., English J. T., Ginzel M. D. (2015). Geosmithia morbida Found on Weevil Species Stenomimus pallidus in Indiana. Plant Health Prog. 16 7–10. 10.1094/PHP-RS-14-0030 DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Kirschner R. (2001). “Diversity of filamentous fungi in bark beetle galleries in central Europe,” in Trichomycetes and Other Fungal Groups, Professor Robert W. Lichtwardt Commemoration Volume, eds Misra J. K., Horn B. W. (Plymouth: Enfield, B.W. Science Publishers, Inc; ), 175–196. 10.1007/s10482-020-01510-6 DOI
Kolařík M., Freeland E., Utley C., Tisserat N. (2011). Geosmithia morbida sp. nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on juglans in USA. Mycologia 103 325–332. 10.3852/10-124 PubMed DOI
Kolařík M., Hulcr J., Tisserat N., De Beer W., Kostovčík M., Kolaříková Z., et al. (2017). Geosmithia associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity. Mycologia 109 185–199. 10.1080/00275514.2017.1303861 PubMed DOI
Kolařík M., Jankowiak R. (2013). Vector Affinity and Diversity of geosmithia fungi living on subcortical insects inhabiting pinaceae species in central and Northeastern Europe. Microb. Ecol. 66 682–700. 10.1007/s00248-013-0228-x PubMed DOI
Kolařík M., Kirkendall L. R. (2010). Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales). Fungal Biol. 114 676–689. 10.1016/j.funbio.2010.06.005 PubMed DOI
Kolařík M., Kostovčík M., Pažoutová S. (2007). Host range and diversity of the genus Geosmithia (Ascomycota: Hypocreales) living in association with bark beetles in the Mediterranean area. Mycol. Res. 111 1298–1310. 10.1016/j.mycres.2007.06.010 PubMed DOI
Kolařík M., Kubátová A., Hulcr J., Pažoutová S. (2008). Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate europe. Mycol. Res. 55 65–80. 10.1007/s00248-007-9251-0 PubMed DOI
Kolařík M., Kubátová A., PažoutovÁ S., Šrůtka P. (2004). Morphological and molecular characterisation of Geosmithia putterillii, G. pallida comb. nov. and G. flava sp. nov., associated with subcorticolous insects. Mycol. Res. 108 1053–1069. 10.1017/S0953756204000796 PubMed DOI
Kolarik M., Kubatova A., van Cepicka I., Pazoutova S., Srutka P. (2005). A complex of three new white-spored, sympatric, and host range limited Geosmithia species. Mycol. Res. 109 1323–1336. 10.1017/S0953756205003965 PubMed DOI
Kubátová A., Kolarik M., Prasˇil K., Novotny D. (2004). Bark beetles and their galleries: well-known niches for little known fungi on the example of Geosmithia. Czech Mycol. 56 1–18. 10.33585/cmy.56101 DOI
Li Y., Wan Y., Lin W., Ernstsons A. S., Gao L. (2021). Estimating potential distribution of sweetgum pest Acanthotomicus suncei and potential economic losses in nursery stock and Urban Areas in China. Insects 12:155. 10.3390/insects12020155 PubMed DOI PMC
Lin Y.-T., Shih H.-H., Huang Y.-T., Lin C.-S., Chen C.-Y. (2016). Two species of beetle-associated Geosmithia in Taiwan. Fungal Sci. 31 29–36. 10.33585/cmy.67103 DOI
Liu L. (2010). New records of Bostrichidae (Insecta: Coleoptera, Bostrichidae, Bostrichinae, Lyctinae, Polycaoninae, Dinoderinae, Apatinae). Mitt. Munch. Entomol. Ges. 100 103–117.
Liu L., Beaver R. A. (2018). “A synopsis of the powderpost beetles of the Himalayas with a key to the genera (Insecta: Coleoptera: Bostrichidae)” in Biodiversität und Naturausstattung im Himalaya VI, eds Hartmann M., Barclay M., Weipert J. (Germany: Naturkundemuseum Erfurt; ), 407–422.
Liu Y. J., Whelen S., Hall B. D. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 16 1799–1808. 10.1093/oxfordjournals.molbev.a026092 PubMed DOI
Lynch S. C., Wang D. H., Mayorquin J. S., Rugman-Jones P. F., Stouthamer R., Eskalen A. (2014). First report of Geosmithia pallida causing foamy bark canker, a new disease on coast live oak (Quercus agrifolia), in association with Pseudopityophthorus pubipennis in California. Plant Dis. 98:1276. 10.1094/PDIS-03-14-0273-PDN PubMed DOI
Machingambi N. M., Roux J., Dreyer L. L., Roets F. (2014). Bark and ambrosia beetles (Curculionidae: Scolytinae), their phoretic mites (Acari) and associated Geosmithia species (Ascomycota: Hypocreales) from Virgilia trees in South Africa. Fungal Biol. 118 472–483. 10.1016/j.funbio.2014.03.006 PubMed DOI
McPherson B. A., Erbilgin N., Bonello P., Wood D. L. (2013). Fungal species assemblages associated with Phytophthora ramorum-infected coast live oaks following bark and ambrosia beetle colonization in northern California. For. Ecol. Manag. 291 30–42. 10.1016/j.foreco.2012.11.010 DOI
Miller M. A., Pfeiffer W., Schwartz T. (2010). “Creating the CIPRES science gateway for inference of large phylogenetic trees,” in Paper Presented at: 2010 Gateway Computing Environments Workshop (GCE), (New Orleans, LA: ).
Montecchio L., Fanchin G., Simonato M., Faccoli M. (2014). First record of thousand cankers disease fungal pathogen Geosmithia morbida and Walnut Twig Beetle Pityophthorus juglandis on Juglans regia in Europe. Plant Dis. 98:1445. 10.1094/PDIS-07-14-0719-PDN PubMed DOI
O’Donnell K., Cigelnik E. (1997). Two Divergent Intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are Nonorthologous. Mol. Phylogenet. Evol. 7 103–116. 10.1006/mpev.1996.0376 PubMed DOI
Pepori A. L., Kolařík M., Bettini P. P., Vettraino A. M., Santini A. (2015). Morphological and molecular characterisation of Geosmithia species on European elms. Fungal Biol. 119 1063–1074. 10.1016/j.funbio.2015.08.003 PubMed DOI
Pitt J. I. (1979). Geosmithia gen. nov. for Penicillium lavendulum and related species. Can. J. Bot. 57 2021–2030. 10.1139/b79-252 DOI
Pitt J. I., Hocking A. D. (2009). Fungi and Food Spoilage, Vol. 519. Berlin: Springer.
Rehner S. A., Buckley E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97 84–98. 10.1080/15572536.2006.11832842 PubMed DOI
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. (2012). MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Seifert K., De Beer Z. W., Wingfield M. (2013). The Ophiostomatoid Fungi: Expanding Frontiers. Utrecht: CBS-KNAW Fungal Biodiversity Centre.
Seybold S. J., Haugen D., O’Brien J., Graves A. D. (2013). Thousand Cankers Disease. USDA Forest Service, Northeastern Area State and Private Forestry Pest Alert NA-PR-02e10. Milwaukee, WI: USDA Forest Service.
Six D. L., Bentz B. J. (2007). Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. Microb. Ecol. 54 112–118. 10.1007/s00248-006-9178-x PubMed DOI
Skelton J., Jusino M. A., Li Y., Bateman C., Thai P. H., Wu C., et al. (2018). Detecting symbioses in complex communities: the fungal symbionts of bark and ambrosia beetles within Asian Pines. Microb. Ecol. 76 839–850. 10.1007/s00248-018-1154-8 PubMed DOI
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC
Stodůlková E., Kolařík M., Køesinová Z., Kuzma M., Šulc M., Man P., et al. (2009). Hydroxylated anthraquinones produced by Geosmithia species. Folia Microbiol. 54 179–187. 10.1007/s12223-009-0028-3 PubMed DOI
Strzałka B., Kolařík M., Jankowiak R. (2021). Geosmithia associated with hardwood-infesting bark and ambrosia beetles, with the description of three new species from Poland. Antonie Van Leeuwenhoek 114 169–194. 10.1007/s10482-020-01510-6 PubMed DOI
Tisserat N., Cranshaw W., Leatherman D., Utley C., Alexander K. (2009). Black walnut mortality in colorado caused by the walnut twig beetle and thousand cankers disease. Plant Health Prog. 10:10. 10.1094/PHP-2009-0811-01-RS DOI
Tisserat N., Cranshaw W., Putnam M. L., Pscheidt J., Leslie C. A., Murray M., et al. (2011). Thousand cankers disease is widespread in black walnut in the Western United States. Plant Health Prog. 12:35. 10.1094/PHP-2011-0630-01-BR DOI
Utley C., Nguyen T., Roubtsova T., Coggeshall M., Ford T. M., Grauke L. J., et al. (2012). Susceptibility of walnut and hickory species to Geosmithia morbida. Plant Dis. 97 601–607. 10.1094/PDIS-07-12-0636-RE PubMed DOI
Vannini A., Contarini M., Faccoli M., Dalla Valle M., Morales-Rodríguez C., Mazzetto T., et al. (2017). First report of the ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy, and new host-pest associations. Bull. OEPP 47 100–103. 10.1111/epp.12358 DOI
Veselská T., Skelton J., Kostovčík M., Hulcr J., Baldrian P., Chudíčková M., et al. (2019). Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecol. 41 165–176. 10.1016/j.funeco.2019.06.005 DOI
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications, Vol. 18 eds Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. (New York, NY: Academic Press, Inc; ), 315–322.
Zheng S., Johnson A. J., Li Y., Chu C., Hulcr J. (2019). Cryphalus eriobotryae sp. nov. (Coleoptera: Curculionidae: Scolytinae), a new insect pest of loquat Eriobotrya japonica in China. Insects 10:180. 10.3390/insects10060180 PubMed DOI PMC