Geosmithia Species Associated With Bark Beetles From China, With the Description of Nine New Species

. 2022 ; 13 () : 820402. [epub] 20220314

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35369427

Fungi of the genus Geosmithia are frequently associated with bark beetles that feed on phloem on various woody hosts. Most studies on Geosmithia were carried out in North and South America and Europe, with only two species being reported from Taiwan, China. This study aimed to investigate the diversity of Geosmithia species in China. Field surveys in Fujian, Guangdong, Guangxi, Hunan, Jiangsu, Jiangxi, Shandong, Shanghai, and Yunnan yielded a total of 178 Geosmithia isolates from 12 beetle species. The isolates were grouped based on morphology. The internal transcribed spacer, β-tubulin, and elongation factor 1-α gene regions of the representatives of each group were sequenced. Phylogenetic trees were constructed based on those sequences. In total, 12 species were identified, with three previously described species (Geosmithia xerotolerans, G. putterillii, and G. pallida) and nine new species which are described in this paper as G. luteobrunnea, G. radiata, G. brevistipitata, G. bombycina, G. granulata (Geosmithia sp. 20), G. subfulva, G. pulverea (G. sp. 3 and Geosmithia sp. 23), G. fusca, and G. pumila sp. nov. The dominant species obtained in this study were G. luteobrunnea and G. pulverea. This study systematically studied the Geosmithia species in China and made an important contribution to filling in the gaps in our understanding of global Geosmithia species diversity.

Zobrazit více v PubMed

Borowski T. (2021). World inventory of beetles of the family Bostrichidae (Coleoptera). Part 2. Check list from 1758 to 2007.

Crous P. W., Luangsa-Ard J. J., Wingfield M. J., Carnegie A. J., Hernández-Restrepo M., Lombard L., et al. (2018). Fungal Planet description sheets: 785-867. PubMed DOI PMC

Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. PubMed DOI PMC

Deka D., Jha D. K. (2018). Optimization of culture parameters for improved production of bioactive metabolite by endophytic DOI

Dori-Bachash M., Avrahami-Moyal L., Protasov A., Mendel Z., Freeman S. (2015). The occurrence and pathogenicity of

Gao L., Cognato A. I. (2018). PubMed DOI

Gao L., Li Y., Wang Z.-X., Zhao J., Hulcr J., Wang J.-G., et al. (2021). Biology and associated fungi of an emerging bark beetle pest, the sweetgum inscriber DOI

Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. PubMed DOI

Glass N. L., Donaldson G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. PubMed DOI PMC

Grum-Grzhimaylo A. A., Georgieva M. L., Debets A. J., Bilanenko E. N. (2013). Are alkalitolerant fungi of the PubMed DOI PMC

Hamelin R., Tanguay P., Uzunovic A., Seifert K. (2013).

Hishinuma S. M., Dallara P. L., Yaghmour M. A., Zerillo M. M., Parker C. M., Roubtsova T. V., et al. (2015). Wingnut (Juglandaceae) as a new generic host for DOI

Huang Y. T., Kolařík M., Kasson M. T., Hulcr J. (2017). Two new PubMed DOI

Huang Y.-T., Skelton J., Johnson A. J., Kolařík M., Hulcr J. (2019). DOI

Jankowiak R., Kolařík M., Bilański P. (2014). Association of DOI

Juzwik J., Banik M. T., Reed S. E., English J. T., Ginzel M. D. (2015). DOI

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. PubMed DOI PMC

Kirschner R. (2001). “Diversity of filamentous fungi in bark beetle galleries in central Europe,” in DOI

Kolařík M., Freeland E., Utley C., Tisserat N. (2011). PubMed DOI

Kolařík M., Hulcr J., Tisserat N., De Beer W., Kostovčík M., Kolaříková Z., et al. (2017). PubMed DOI

Kolařík M., Jankowiak R. (2013). Vector Affinity and Diversity of PubMed DOI

Kolařík M., Kirkendall L. R. (2010). Evidence for a new lineage of primary ambrosia fungi in PubMed DOI

Kolařík M., Kostovčík M., Pažoutová S. (2007). Host range and diversity of the genus PubMed DOI

Kolařík M., Kubátová A., Hulcr J., Pažoutová S. (2008). PubMed DOI

Kolařík M., Kubátová A., PažoutovÁ S., Šrůtka P. (2004). Morphological and molecular characterisation of PubMed DOI

Kolarik M., Kubatova A., van Cepicka I., Pazoutova S., Srutka P. (2005). A complex of three new white-spored, sympatric, and host range limited PubMed DOI

Kubátová A., Kolarik M., Prasˇil K., Novotny D. (2004). Bark beetles and their galleries: well-known niches for little known fungi on the example of DOI

Li Y., Wan Y., Lin W., Ernstsons A. S., Gao L. (2021). Estimating potential distribution of sweetgum pest PubMed DOI PMC

Lin Y.-T., Shih H.-H., Huang Y.-T., Lin C.-S., Chen C.-Y. (2016). Two species of beetle-associated DOI

Liu L. (2010). New records of Bostrichidae (Insecta: Coleoptera, Bostrichidae, Bostrichinae, Lyctinae, Polycaoninae, Dinoderinae, Apatinae).

Liu L., Beaver R. A. (2018). “A synopsis of the powderpost beetles of the Himalayas with a key to the genera (Insecta: Coleoptera: Bostrichidae)” in

Liu Y. J., Whelen S., Hall B. D. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. PubMed DOI

Lynch S. C., Wang D. H., Mayorquin J. S., Rugman-Jones P. F., Stouthamer R., Eskalen A. (2014). First report of PubMed DOI

Machingambi N. M., Roux J., Dreyer L. L., Roets F. (2014). Bark and ambrosia beetles (Curculionidae: Scolytinae), their phoretic mites ( PubMed DOI

McPherson B. A., Erbilgin N., Bonello P., Wood D. L. (2013). Fungal species assemblages associated with DOI

Miller M. A., Pfeiffer W., Schwartz T. (2010). “Creating the CIPRES science gateway for inference of large phylogenetic trees,” in

Montecchio L., Fanchin G., Simonato M., Faccoli M. (2014). First record of thousand cankers disease fungal pathogen PubMed DOI

O’Donnell K., Cigelnik E. (1997). Two Divergent Intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus PubMed DOI

Pepori A. L., Kolařík M., Bettini P. P., Vettraino A. M., Santini A. (2015). Morphological and molecular characterisation of PubMed DOI

Pitt J. I. (1979). DOI

Pitt J. I., Hocking A. D. (2009).

Rehner S. A., Buckley E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to PubMed DOI

Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. (2012). MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. PubMed DOI PMC

Seifert K., De Beer Z. W., Wingfield M. (2013).

Seybold S. J., Haugen D., O’Brien J., Graves A. D. (2013).

Six D. L., Bentz B. J. (2007). Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. PubMed DOI

Skelton J., Jusino M. A., Li Y., Bateman C., Thai P. H., Wu C., et al. (2018). Detecting symbioses in complex communities: the fungal symbionts of bark and ambrosia beetles within Asian Pines. PubMed DOI

Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. PubMed DOI PMC

Stodůlková E., Kolařík M., Køesinová Z., Kuzma M., Šulc M., Man P., et al. (2009). Hydroxylated anthraquinones produced by PubMed DOI

Strzałka B., Kolařík M., Jankowiak R. (2021). PubMed DOI

Tisserat N., Cranshaw W., Leatherman D., Utley C., Alexander K. (2009). Black walnut mortality in colorado caused by the walnut twig beetle and thousand cankers disease. DOI

Tisserat N., Cranshaw W., Putnam M. L., Pscheidt J., Leslie C. A., Murray M., et al. (2011). Thousand cankers disease is widespread in black walnut in the Western United States. DOI

Utley C., Nguyen T., Roubtsova T., Coggeshall M., Ford T. M., Grauke L. J., et al. (2012). Susceptibility of walnut and hickory species to PubMed DOI

Vannini A., Contarini M., Faccoli M., Dalla Valle M., Morales-Rodríguez C., Mazzetto T., et al. (2017). First report of the ambrosia beetle DOI

Veselská T., Skelton J., Kostovčík M., Hulcr J., Baldrian P., Chudíčková M., et al. (2019). Adaptive traits of bark and ambrosia beetle-associated fungi. DOI

White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in

Zheng S., Johnson A. J., Li Y., Chu C., Hulcr J. (2019). PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Fungal Planet description sheets: 1383-1435

. 2022 Jul 12 ; 48 () : 261-371.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...