Geosmithia Species Associated With Bark Beetles From China, With the Description of Nine New Species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35369427
PubMed Central
PMC8964297
DOI
10.3389/fmicb.2022.820402
Knihovny.cz E-zdroje
- Klíčová slova
- 9 new taxa, Geosmithia, bark beetles, fungal community, symbiosis,
- Publikační typ
- časopisecké články MeSH
Fungi of the genus Geosmithia are frequently associated with bark beetles that feed on phloem on various woody hosts. Most studies on Geosmithia were carried out in North and South America and Europe, with only two species being reported from Taiwan, China. This study aimed to investigate the diversity of Geosmithia species in China. Field surveys in Fujian, Guangdong, Guangxi, Hunan, Jiangsu, Jiangxi, Shandong, Shanghai, and Yunnan yielded a total of 178 Geosmithia isolates from 12 beetle species. The isolates were grouped based on morphology. The internal transcribed spacer, β-tubulin, and elongation factor 1-α gene regions of the representatives of each group were sequenced. Phylogenetic trees were constructed based on those sequences. In total, 12 species were identified, with three previously described species (Geosmithia xerotolerans, G. putterillii, and G. pallida) and nine new species which are described in this paper as G. luteobrunnea, G. radiata, G. brevistipitata, G. bombycina, G. granulata (Geosmithia sp. 20), G. subfulva, G. pulverea (G. sp. 3 and Geosmithia sp. 23), G. fusca, and G. pumila sp. nov. The dominant species obtained in this study were G. luteobrunnea and G. pulverea. This study systematically studied the Geosmithia species in China and made an important contribution to filling in the gaps in our understanding of global Geosmithia species diversity.
College of Life Sciences Shandong Normal University Jinan China
College of Plant Protection Fujian Agriculture and Forestry University Fuzhou China
Institute of Microbiology Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Borowski T. (2021). World inventory of beetles of the family Bostrichidae (Coleoptera). Part 2. Check list from 1758 to 2007.
Crous P. W., Luangsa-Ard J. J., Wingfield M. J., Carnegie A. J., Hernández-Restrepo M., Lombard L., et al. (2018). Fungal Planet description sheets: 785-867. PubMed DOI PMC
Darriba D., Taboada G. L., Doallo R., Posada D. (2012). jModelTest 2: more models, new heuristics and parallel computing. PubMed DOI PMC
Deka D., Jha D. K. (2018). Optimization of culture parameters for improved production of bioactive metabolite by endophytic DOI
Dori-Bachash M., Avrahami-Moyal L., Protasov A., Mendel Z., Freeman S. (2015). The occurrence and pathogenicity of
Gao L., Cognato A. I. (2018). PubMed DOI
Gao L., Li Y., Wang Z.-X., Zhao J., Hulcr J., Wang J.-G., et al. (2021). Biology and associated fungi of an emerging bark beetle pest, the sweetgum inscriber DOI
Gardes M., Bruns T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. PubMed DOI
Glass N. L., Donaldson G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. PubMed DOI PMC
Grum-Grzhimaylo A. A., Georgieva M. L., Debets A. J., Bilanenko E. N. (2013). Are alkalitolerant fungi of the PubMed DOI PMC
Hamelin R., Tanguay P., Uzunovic A., Seifert K. (2013).
Hishinuma S. M., Dallara P. L., Yaghmour M. A., Zerillo M. M., Parker C. M., Roubtsova T. V., et al. (2015). Wingnut (Juglandaceae) as a new generic host for DOI
Huang Y. T., Kolařík M., Kasson M. T., Hulcr J. (2017). Two new PubMed DOI
Huang Y.-T., Skelton J., Johnson A. J., Kolařík M., Hulcr J. (2019). DOI
Jankowiak R., Kolařík M., Bilański P. (2014). Association of DOI
Juzwik J., Banik M. T., Reed S. E., English J. T., Ginzel M. D. (2015). DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. PubMed DOI PMC
Kirschner R. (2001). “Diversity of filamentous fungi in bark beetle galleries in central Europe,” in DOI
Kolařík M., Freeland E., Utley C., Tisserat N. (2011). PubMed DOI
Kolařík M., Hulcr J., Tisserat N., De Beer W., Kostovčík M., Kolaříková Z., et al. (2017). PubMed DOI
Kolařík M., Jankowiak R. (2013). Vector Affinity and Diversity of PubMed DOI
Kolařík M., Kirkendall L. R. (2010). Evidence for a new lineage of primary ambrosia fungi in PubMed DOI
Kolařík M., Kostovčík M., Pažoutová S. (2007). Host range and diversity of the genus PubMed DOI
Kolařík M., Kubátová A., Hulcr J., Pažoutová S. (2008). PubMed DOI
Kolařík M., Kubátová A., PažoutovÁ S., Šrůtka P. (2004). Morphological and molecular characterisation of PubMed DOI
Kolarik M., Kubatova A., van Cepicka I., Pazoutova S., Srutka P. (2005). A complex of three new white-spored, sympatric, and host range limited PubMed DOI
Kubátová A., Kolarik M., Prasˇil K., Novotny D. (2004). Bark beetles and their galleries: well-known niches for little known fungi on the example of DOI
Li Y., Wan Y., Lin W., Ernstsons A. S., Gao L. (2021). Estimating potential distribution of sweetgum pest PubMed DOI PMC
Lin Y.-T., Shih H.-H., Huang Y.-T., Lin C.-S., Chen C.-Y. (2016). Two species of beetle-associated DOI
Liu L. (2010). New records of Bostrichidae (Insecta: Coleoptera, Bostrichidae, Bostrichinae, Lyctinae, Polycaoninae, Dinoderinae, Apatinae).
Liu L., Beaver R. A. (2018). “A synopsis of the powderpost beetles of the Himalayas with a key to the genera (Insecta: Coleoptera: Bostrichidae)” in
Liu Y. J., Whelen S., Hall B. D. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. PubMed DOI
Lynch S. C., Wang D. H., Mayorquin J. S., Rugman-Jones P. F., Stouthamer R., Eskalen A. (2014). First report of PubMed DOI
Machingambi N. M., Roux J., Dreyer L. L., Roets F. (2014). Bark and ambrosia beetles (Curculionidae: Scolytinae), their phoretic mites ( PubMed DOI
McPherson B. A., Erbilgin N., Bonello P., Wood D. L. (2013). Fungal species assemblages associated with DOI
Miller M. A., Pfeiffer W., Schwartz T. (2010). “Creating the CIPRES science gateway for inference of large phylogenetic trees,” in
Montecchio L., Fanchin G., Simonato M., Faccoli M. (2014). First record of thousand cankers disease fungal pathogen PubMed DOI
O’Donnell K., Cigelnik E. (1997). Two Divergent Intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus PubMed DOI
Pepori A. L., Kolařík M., Bettini P. P., Vettraino A. M., Santini A. (2015). Morphological and molecular characterisation of PubMed DOI
Pitt J. I. (1979). DOI
Pitt J. I., Hocking A. D. (2009).
Rehner S. A., Buckley E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to PubMed DOI
Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., et al. (2012). MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. PubMed DOI PMC
Seifert K., De Beer Z. W., Wingfield M. (2013).
Seybold S. J., Haugen D., O’Brien J., Graves A. D. (2013).
Six D. L., Bentz B. J. (2007). Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. PubMed DOI
Skelton J., Jusino M. A., Li Y., Bateman C., Thai P. H., Wu C., et al. (2018). Detecting symbioses in complex communities: the fungal symbionts of bark and ambrosia beetles within Asian Pines. PubMed DOI
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. PubMed DOI PMC
Stodůlková E., Kolařík M., Køesinová Z., Kuzma M., Šulc M., Man P., et al. (2009). Hydroxylated anthraquinones produced by PubMed DOI
Strzałka B., Kolařík M., Jankowiak R. (2021). PubMed DOI
Tisserat N., Cranshaw W., Leatherman D., Utley C., Alexander K. (2009). Black walnut mortality in colorado caused by the walnut twig beetle and thousand cankers disease. DOI
Tisserat N., Cranshaw W., Putnam M. L., Pscheidt J., Leslie C. A., Murray M., et al. (2011). Thousand cankers disease is widespread in black walnut in the Western United States. DOI
Utley C., Nguyen T., Roubtsova T., Coggeshall M., Ford T. M., Grauke L. J., et al. (2012). Susceptibility of walnut and hickory species to PubMed DOI
Vannini A., Contarini M., Faccoli M., Dalla Valle M., Morales-Rodríguez C., Mazzetto T., et al. (2017). First report of the ambrosia beetle DOI
Veselská T., Skelton J., Kostovčík M., Hulcr J., Baldrian P., Chudíčková M., et al. (2019). Adaptive traits of bark and ambrosia beetle-associated fungi. DOI
White T. J., Bruns T., Lee S., Taylor J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in
Zheng S., Johnson A. J., Li Y., Chu C., Hulcr J. (2019). PubMed DOI PMC