Most cited article - PubMed ID 21029738
Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity?
Numerous insect species living in temperate regions survive adverse conditions, such as winter, in a state of developmental arrest. The most reliable cue for anticipating seasonal changes is the day-to-night ratio, the photoperiod. The molecular mechanism of the photoperiodic timer in insects is mostly unclear. Multiple pieces of evidence suggest the involvement of circadian clock genes, however, their role might be independent of their well-established role in the daily oscillation of the circadian clock. Furthermore, reproductive diapause is preferentially studied in females, whereas males are usually used for circadian clock research. Given the idiosyncrasies of male and female physiology, we decided to test male reproductive diapause in a strongly photoperiodic species, the linden bug Pyrrhocoris apterus. The data indicate that reproduction is not under circadian control, whereas the photoperiod strongly determines males' mating capacity. Clock mutants in pigment dispersing factor and cryptochrome-m genes are reproductive even in short photoperiod. Thus, we provide additional evidence of the participation of circadian clock genes in the photoperiodic time measurement in insects.
- Keywords
- Circadian clock, Cryptochrome, Photoperiodism, Pigment dispersing factor, Reproductive diapause,
- MeSH
- Circadian Clocks * genetics physiology MeSH
- Circadian Rhythm physiology genetics MeSH
- Diapause, Insect genetics physiology MeSH
- Photoperiod * MeSH
- Heteroptera * genetics physiology MeSH
- Insect Proteins genetics metabolism MeSH
- Cryptochromes * genetics metabolism MeSH
- Mutation * MeSH
- Reproduction physiology genetics MeSH
- Sexual Behavior, Animal physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Insect Proteins MeSH
- Cryptochromes * MeSH
Many physiological processes of living organisms show circadian rhythms, governed by an endogenous clock. This clock has a genetic basis and is entrained by external cues, such as light and temperature. Other physiological processes exhibit seasonal rhythms, that are also responsive to light and temperature. We previously reported a natural latitudinal cline of photoperiodic diapause induction in the parasitic wasp Nasonia vitripennis in Europe and a correlated haplotype frequency for the circadian clock gene period (per). To evaluate if this correlation is reflected in circadian behaviour, we investigated the circadian locomotor activity of seven populations from the cline. We found that the proportion of rhythmic males was higher than females in constant darkness, and that mating decreased rhythmicity of both sexes. Only for virgin females, the free running period (τ) increased weakly with latitude. Wasps from the most southern locality had an overall shorter free running rhythm and earlier onset, peak, and offset of activity during the 24 h period, than wasps from the northernmost locality. We evaluated this variation in rhythmicity as a function of period haplotype frequencies in the populations and discussed its functional significance in the context of local adaptation.
- Keywords
- Nasonia vitripennis, circadian clock, free running period, latitudinal cline, period,
- Publication type
- Journal Article MeSH
BACKGROUND: Diapause is a developmental alternative to direct ontogeny in many invertebrates. Its primary adaptive meaning is to secure survival over unfavourable seasons in a state of developmental arrest usually accompanied by metabolic suppression and enhanced tolerance to environmental stressors. During photoperiodically triggered diapause of insects, the ontogeny is centrally turned off under hormonal control, the molecular details of this transition being poorly understood. Using RNAseq technology, we characterized transcription profiles associated with photoperiodic diapause induction in the larvae of the drosophilid fly Chymomyza costata with the goal of identifying candidate genes and processes linked to upstream regulatory events that eventually lead to a complex phenotypic change. RESULTS: Short day photoperiod triggering diapause was associated to inhibition of 20-hydroxy ecdysone (20-HE) signalling during the photoperiod-sensitive stage of C. costata larval development. The mRNA levels of several key genes involved in 20-HE biosynthesis, perception, and signalling were significantly downregulated under short days. Hormonal change was translated into downregulation of a series of other transcripts with broad influence on gene expression, protein translation, alternative histone marking by methylation and alternative splicing. These changes probably resulted in blockade of direct development and deep restructuring of metabolic pathways indicated by differential expression of genes involved in cell cycle regulation, metabolism, detoxification, redox balance, protection against oxidative stress, cuticle formation and synthesis of larval storage proteins. This highly complex alteration of gene transcription was expressed already during first extended night, within the first four hours after the change of the photoperiodic signal from long days to short days. We validated our RNAseq differential gene expression results in an independent qRT-PCR experiment involving wild-type (photoperiodic) and NPD-mutant (non-photoperiodic) strains of C. costata. CONCLUSIONS: Our study revealed several strong candidate genes for follow-up functional studies. Candidate genes code for upstream regulators of a complex change of gene expression, which leads to phenotypic switch from direct ontogeny to larval diapause.
- MeSH
- Drosophilidae embryology genetics MeSH
- Transcription, Genetic * MeSH
- Larva genetics MeSH
- Reproducibility of Results MeSH
- Sequence Analysis, RNA MeSH
- Cluster Analysis MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- Gene Expression Regulation, Developmental MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In temperate regions, the shortening day length informs many insect species to prepare for winter by inducing diapause. The adult diapause of the linden bug, Pyrrhocoris apterus, involves a reproductive arrest accompanied by energy storage, reduction of metabolic needs, and preparation to withstand low temperatures. By contrast, nondiapause animals direct nutrient energy to muscle activity and reproduction. The photoperiod-dependent switch from diapause to reproduction is systemically transmitted throughout the organism by juvenile hormone (JH). Here, we show that, at the organ-autonomous level of the insect gut, the decision between reproduction and diapause relies on an interaction between JH signaling and circadian clock genes acting independently of the daily cycle. The JH receptor Methoprene-tolerant and the circadian proteins Clock and Cycle are all required in the gut to activate the Par domain protein 1 gene during reproduction and to simultaneously suppress a mammalian-type cryptochrome 2 gene that promotes the diapause program. A nonperiodic, organ-autonomous feedback between Par domain protein 1 and Cryptochrome 2 then orchestrates expression of downstream genes that mark the diapause vs. reproductive states of the gut. These results show that hormonal signaling through Methoprene-tolerant and circadian proteins controls gut-specific gene activity that is independent of circadian oscillations but differs between reproductive and diapausing animals.
- MeSH
- Circadian Clocks physiology MeSH
- Photoperiod MeSH
- Heteroptera genetics metabolism MeSH
- Genes, Insect physiology MeSH
- Insect Proteins biosynthesis genetics MeSH
- Cryptochromes biosynthesis genetics MeSH
- Methoprene metabolism MeSH
- Signal Transduction physiology MeSH
- Intestinal Mucosa metabolism MeSH
- Transcription Factors biosynthesis genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insect Proteins MeSH
- Cryptochromes MeSH
- Methoprene MeSH
- Transcription Factors MeSH