Nejvíce citovaný článek - PubMed ID 17244599
Numerous insect species living in temperate regions survive adverse conditions, such as winter, in a state of developmental arrest. The most reliable cue for anticipating seasonal changes is the day-to-night ratio, the photoperiod. The molecular mechanism of the photoperiodic timer in insects is mostly unclear. Multiple pieces of evidence suggest the involvement of circadian clock genes, however, their role might be independent of their well-established role in the daily oscillation of the circadian clock. Furthermore, reproductive diapause is preferentially studied in females, whereas males are usually used for circadian clock research. Given the idiosyncrasies of male and female physiology, we decided to test male reproductive diapause in a strongly photoperiodic species, the linden bug Pyrrhocoris apterus. The data indicate that reproduction is not under circadian control, whereas the photoperiod strongly determines males' mating capacity. Clock mutants in pigment dispersing factor and cryptochrome-m genes are reproductive even in short photoperiod. Thus, we provide additional evidence of the participation of circadian clock genes in the photoperiodic time measurement in insects.
- Klíčová slova
- Circadian clock, Cryptochrome, Photoperiodism, Pigment dispersing factor, Reproductive diapause,
- MeSH
- cirkadiánní hodiny * genetika fyziologie MeSH
- cirkadiánní rytmus fyziologie genetika MeSH
- diapauza hmyzu genetika fyziologie MeSH
- fotoperioda * MeSH
- Heteroptera * genetika fyziologie MeSH
- hmyzí proteiny genetika metabolismus MeSH
- kryptochromy * genetika metabolismus MeSH
- mutace * MeSH
- rozmnožování fyziologie genetika MeSH
- sexuální chování zvířat fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hmyzí proteiny MeSH
- kryptochromy * MeSH
TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.
- MeSH
- buněčná membrána MeSH
- cirkadiánní hodiny * genetika MeSH
- cirkadiánní rytmus genetika MeSH
- ekdyson genetika MeSH
- hmyz MeSH
- juvenilní hormony genetika MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ekdyson MeSH
- juvenilní hormony MeSH
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.
Most organisms possess time-keeping devices called circadian clocks. At the molecular level, circadian clocks consist of transcription-translation feedback loops (TTFLs). Although some components of the negative TTFL are conserved across the animals, important differences exist between typical models, such as mouse and the fruit fly. In Drosophila, the key components are PERIOD (PER) and TIMELESS (TIM-d) proteins, whereas the mammalian clock relies on PER and CRYPTOCHROME (CRY-m). Importantly, how the clock has maintained functionality during evolutionary transitions between different states remains elusive. Therefore, we systematically described the circadian clock gene setup in major bilaterian lineages and identified marked lineage-specific differences in their clock constitution. Then we performed a thorough functional analysis of the linden bug Pyrrhocoris apterus, an insect species comprising features characteristic of both the Drosophila and the mammalian clocks. Unexpectedly, the knockout of timeless-d, a gene essential for the clock ticking in Drosophila, did not compromise rhythmicity in P. apterus, it only accelerated its pace. Furthermore, silencing timeless-m, the ancestral timeless type ubiquitously present across animals, resulted in a mild gradual loss of rhythmicity, supporting its possible participation in the linden bug clock, which is consistent with timeless-m role suggested by research on mammalian models. The dispensability of timeless-d in P. apterus allows drawing a scenario in which the clock has remained functional at each step of transition from an ancestral state to the TIM-d-independent PER + CRY-m system operating in extant vertebrates, including humans.
- Klíčová slova
- timeless, Bilateria, Insecta, circadian clock, gene loss, reverse genetics,
- MeSH
- cirkadiánní hodiny * genetika MeSH
- cirkadiánní rytmus genetika MeSH
- Drosophila melanogaster genetika MeSH
- kryptochromy genetika MeSH
- myši MeSH
- proteiny Drosophily * genetika metabolismus MeSH
- savci metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kryptochromy MeSH
- proteiny Drosophily * MeSH
Circadian clocks are synchronized with the external environment by light and temperature. The effect of these cues on behavior is well-characterized in Drosophila, however, little is known about synchronization in non-model insect species. Therefore, we explored entrainment of locomotor activity by light and temperature in the linden bug Pyrrhocoris apterus (Heteroptera), an insect species with a strong seasonal response (reproductive diapause), which is triggered by both photoperiod and thermoperiod. Our results show that either light or temperature cycles are strong factors entraining P. apterus locomotor activity. Pyrrhocoris is able to be partially synchronized by cycles with temperature amplitude as small as 3°C and more than 50% of bugs is synchronized by 5°C steps. If conflicting zeitgebers are provided, light is the stronger signal. Linden bugs lack light-sensitive (Drosophila-like) cryptochrome. Notably, a high percentage of bugs is rhythmic even in constant light (LL) at intensity ∼400 lux, a condition which induces 100% arrhythmicity in Drosophila. However, the rhythmicity of bugs is still reduced in LL conditions, whereas rhythmicity remains unaffected in constant dark (DD). Interestingly, a similar phenomenon is observed after temperature cycles entrainment. Bugs released to constant thermophase and DD display weak rhythmicity, whereas strong rhythmicity is observed in bugs released to constant cryophase and DD. Our study describes the daily and circadian behavior of the linden bug as a response to photoperiodic and thermoperiodic entraining cues. Although the molecular mechanism of the circadian clock entrainment in the linden bug is virtually unknown, our study contributes to the knowledge of the insect circadian clock features beyond Drosophila research.
- Klíčová slova
- Pyrrhocoris apterus, circadian clock, constant light, entrainment, photoperiod, synchronization, temperature compensation, thermoperiod,
- Publikační typ
- časopisecké články MeSH
The CRISPR/Cas9 technique is widely used in experimentation with human cell lines as well as with other model systems, such as mice Mus musculus, zebrafish Danio reiro, and the fruit fly Drosophila melanogaster. However, publications describing the use of CRISPR/Cas9 for genome editing in non-model organisms, including non-model insects, are scarce. The introduction of this relatively new method presents many problems even for experienced researchers, especially with the lack of procedures to tackle issues concerning the efficiency of mutant generation. Here we present a protocol for efficient genome editing in the non-model insect species Pyrrhocoris apterus. We collected data from several independent trials that targeted several genes using the CRISPR/Cas9 system and determined that several crucial optimization steps led to a remarkably increased efficiency of mutant production. The main steps are as follows: the timing of embryo injection, the use of the heteroduplex mobility assay as a screening method, in vivo testing of sgRNA efficiency, and G0 germline mosaicism screening. The timing and the method of egg injections used here need to be optimized for other species, but other here-described optimization solutions can be applied immediately for genome editing in other insect species.
- Klíčová slova
- CRISPR/Cas9, efficiency optimization, genetic mosaicism, genome editing, non-model insect,
- Publikační typ
- časopisecké články MeSH
Circadian clocks orchestrate daily activity patterns and free running periods of locomotor activity under constant conditions. While the first often depends on temperature, the latter is temperature-compensated over a physiologically relevant range. Here, we explored the locomotor activity of the temperate housefly Musca domestica Under low temperatures, activity was centered round a major and broad afternoon peak, while high temperatures resulted in activity throughout the photophase with a mild midday depression, which was especially pronounced in males exposed to long photoperiods. While period (per) mRNA peaked earlier under low temperatures, no temperature-dependent splicing of the last per 3' end intron was identified. The expression of timeless, vrille, and Par domain protein 1 was also influenced by temperature, each in a different manner. Our data indicated that comparable behavioral trends in daily activity distribution have evolved in Drosophila melanogaster and M. domestica, yet the behaviors of these two species are orchestrated by different molecular mechanisms.
- Klíčová slova
- circadian clock genes, locomotor activity, mRNA splicing, temperature compensation of circadian rhythms, transcription,
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- časové faktory MeSH
- cirkadiánní rytmus genetika MeSH
- Drosophila melanogaster genetika MeSH
- exony genetika MeSH
- fotoperioda MeSH
- fylogeneze MeSH
- hmyzí geny * MeSH
- introny genetika MeSH
- kondiční příprava zvířat MeSH
- kryptochromy genetika MeSH
- messenger RNA genetika metabolismus MeSH
- moucha domácí MeSH
- pohybová aktivita MeSH
- promotorové oblasti (genetika) genetika MeSH
- regulace genové exprese MeSH
- sestřih RNA genetika MeSH
- teplota * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- kryptochromy MeSH
- messenger RNA MeSH
The ability to perceive geomagnetic fields (GMFs) represents a fascinating biological phenomenon. Studies on transgenic flies have provided evidence that photosensitive Cryptochromes (Cry) are involved in the response to magnetic fields (MFs). However, none of the studies tackled the problem of whether the Cry-dependent magnetosensitivity is coupled to the sole MF presence or to the direction of MF vector. In this study, we used gene silencing and a directional MF to show that mammalian-like Cry2 is necessary for a genuine directional response to periodic rotations of the GMF vector in two insect species. Longer wavelengths of light required higher photon fluxes for a detectable behavioral response, and a sharp detection border was present in the cyan/green spectral region. Both observations are consistent with involvement of the FADox, FAD(•-) and FADH(-) redox forms of flavin. The response was lost upon covering the eyes, demonstrating that the signal is perceived in the eye region. Immunohistochemical staining detected Cry2 in the hemispherical layer of laminal glia cells underneath the retina. Together, these findings identified the eye-localized Cry2 as an indispensable component and a likely photoreceptor of the directional GMF response. Our study is thus a clear step forward in deciphering the in vivo effects of GMF and supports the interaction of underlying mechanism with the visual system.
- Klíčová slova
- circadian genes, cryptochrome, light spectrum, locomotor activity, magnetoreception,
- MeSH
- fenotyp MeSH
- fotoreceptory bezobratlých metabolismus účinky záření MeSH
- kryptochromy metabolismus MeSH
- magnetické pole * MeSH
- složené oko členovců účinky záření MeSH
- švábi metabolismus účinky záření MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kryptochromy MeSH
In temperate regions, the shortening day length informs many insect species to prepare for winter by inducing diapause. The adult diapause of the linden bug, Pyrrhocoris apterus, involves a reproductive arrest accompanied by energy storage, reduction of metabolic needs, and preparation to withstand low temperatures. By contrast, nondiapause animals direct nutrient energy to muscle activity and reproduction. The photoperiod-dependent switch from diapause to reproduction is systemically transmitted throughout the organism by juvenile hormone (JH). Here, we show that, at the organ-autonomous level of the insect gut, the decision between reproduction and diapause relies on an interaction between JH signaling and circadian clock genes acting independently of the daily cycle. The JH receptor Methoprene-tolerant and the circadian proteins Clock and Cycle are all required in the gut to activate the Par domain protein 1 gene during reproduction and to simultaneously suppress a mammalian-type cryptochrome 2 gene that promotes the diapause program. A nonperiodic, organ-autonomous feedback between Par domain protein 1 and Cryptochrome 2 then orchestrates expression of downstream genes that mark the diapause vs. reproductive states of the gut. These results show that hormonal signaling through Methoprene-tolerant and circadian proteins controls gut-specific gene activity that is independent of circadian oscillations but differs between reproductive and diapausing animals.
- MeSH
- cirkadiánní hodiny fyziologie MeSH
- fotoperioda MeSH
- Heteroptera genetika metabolismus MeSH
- hmyzí geny fyziologie MeSH
- hmyzí proteiny biosyntéza genetika MeSH
- kryptochromy biosyntéza genetika MeSH
- methopren metabolismus MeSH
- signální transdukce fyziologie MeSH
- střevní sliznice metabolismus MeSH
- transkripční faktory biosyntéza genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hmyzí proteiny MeSH
- kryptochromy MeSH
- methopren MeSH
- transkripční faktory MeSH