Nejvíce citovaný článek - PubMed ID 21042405
A honeybee colony is a complex and dynamic system that emerges out of the interactions of thousands of individuals within a seemingly chaotic and heterogeneous environment. At the figurative core of this system is the honeybee queen, responsible for the growth and reproduction of the eusocial superorganism. In this study, we examine the interaction between the queen and her surrounding environment by analyzing her movement patterns using mathematical models and computational approaches. We employed a visual tracking system to observe three queens of Apis mellifera within their colonies over a three-week period and analyzed sets of quality tracklets to provide observational evidence regarding the queens' motion-related decision-making. Contrary to expectations, we found that the queen's short-term motion characteristics-such as speed and turning-were remarkably invariant across distinct hive regions, suggesting a lack of direct environmental modulation at short timescales. Yet, long-term patterns showed structured and strategic behavior. Inter-stop distances followed a power-law distribution, and queens repeatedly revisited specific spatial zones over multi-day timescales. These results indicate a dual-scale movement strategy that is not captured by standard random walk models, highlighting internal state or memory-based navigation. Our findings suggest that queen movement is shaped by temporally layered processes that may support brood nest stability, efficient egg-laying, and colony cohesion.
- MeSH
- chování zvířat * fyziologie MeSH
- pohyb fyziologie MeSH
- sociální chování MeSH
- včely fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A honeybee colony, as a super-organism, is regulated through age-polyethism. A honeybee worker's age is considered by means of a chronological and biological approach. The biological age is estimated with physiologically related biological markers, e.g., total hemolymph protein content (THP) and hypopharyngeal gland size (HGs), which also vary seasonally. Contemporary insights into the age-related spatial workers' distribution within the hive nest space regarding biological age are insufficiently clarified. This study aimed to monitor changes in selected physiological markers during the entire season in relation to worker age and their spatial position in the hive nest. THP content and HG size analysis was performed in nine colonies for the entire season to compare the physiological markers within and among the groups of the workers whose ages were known and sampled in different hive parts. Seasonal impact on the biomarkers' development was confirmed in known-age workers. In the case of HGs, this impact was the most apparent in 4- and 5-week-old workers. For THP, the seasonal impact was the most obvious in 2-week-old workers. The highest THP was found in 1- and 2-week-old workers during the entire season. Biologically younger workers of the same age were located predominantly in upper hive parts consistently throughout the year and vice versa. These workers showed significantly higher THP in comparison with those sampled below. Regarding the chronological age, the downwards, spatially shifting mechanism of workers within the hive nest while they aged was characterized. We recommend storage of diluted hemolymph samples up to one month before performing an assay if necessary. The physiological context, relation to division of labor and benefits for beekeeping practices are discussed.
- Klíčová slova
- Apis mellifera, age-polyethism, biomarkers, distribution, physiology, sample, worker,
- Publikační typ
- časopisecké články MeSH