Nejvíce citovaný článek - PubMed ID 21456833
The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks
INTRODUCTION: Intracranial EEG (iEEG) data is a powerful way to map brain function, characterized by high temporal and spatial resolution, allowing the study of interactions among neuronal populations that orchestrate cognitive processing. However, the statistical inference and analysis of brain networks using iEEG data faces many challenges related to its sparse brain coverage, and its inhomogeneity across patients. METHODS: We review these challenges and develop a methodological pipeline for estimation of network structure not obtainable from any single patient, illustrated on the inference of the interaction among visual streams using a dataset of 27 human iEEG recordings from a visual experiment employing visual scene stimuli. 100 ms sliding window and multiple band-pass filtered signals are used to provide temporal and spectral resolution. For the connectivity analysis we showcase two connectivity measures reflecting different types of interaction between regions of interest (ROI): Phase Locking Value as a symmetric measure of synchrony, and Directed Transfer Function-asymmetric measure describing causal interaction. For each two channels, initial uncorrected significance testing at p < 0.05 for every time-frequency point is carried out by comparison of the data-derived connectivity to a baseline surrogate-based null distribution, providing a binary time-frequency connectivity map. For each ROI pair, a connectivity density map is obtained by averaging across all pairs of channels spanning them, effectively agglomerating data across relevant channels and subjects. Finally, the difference of the mean map value after and before the stimulation is compared to the same statistic in surrogate data to assess link significance. RESULTS: The analysis confirmed the function of the parieto-medial temporal pathway, mediating visuospatial information between dorsal and ventral visual streams during visual scene analysis. Moreover, we observed the anterior hippocampal connectivity with more posterior areas in the medial temporal lobe, and found the reciprocal information flow between early processing areas and medial place area. DISCUSSION: To summarize, we developed an approach for estimating network connectivity, dealing with the challenge of sparse individual coverage of intracranial EEG electrodes. Its application provided new insights into the interaction between the dorsal and ventral visual streams, one of the iconic dualities in human cognition.
- Klíčová slova
- Directed Transfer Function, Phase Locking Value, connectivity analysis, dorsal visual stream, information flow, intracranial EEG, ventral visual stream, visual pathways,
- Publikační typ
- časopisecké články MeSH
The inference of causal relations between observable phenomena is paramount across scientific disciplines; however, the means for such enterprise without experimental manipulation are limited. A commonly applied principle is that of the cause preceding and predicting the effect, taking into account other circumstances. Intuitively, when the temporal order of events is reverted, one would expect the cause and effect to apparently switch roles. This was previously demonstrated in bivariate linear systems and used in design of improved causal inference scores, while such behaviour in linear systems has been put in contrast with nonlinear chaotic systems where the inferred causal direction appears unchanged under time reversal. The presented work explores the conditions under which the causal reversal happens-either perfectly, approximately, or not at all-using theoretical analysis, low-dimensional examples, and network simulations, focusing on the simplified yet illustrative linear vector autoregressive process of order one. We start with a theoretical analysis that demonstrates that a perfect coupling reversal under time reversal occurs only under very specific conditions, followed up by constructing low-dimensional examples where indeed the dominant causal direction is even conserved rather than reversed. Finally, simulations of random as well as realistically motivated network coupling patterns from brain and climate show that level of coupling reversal and conservation can be well predicted by asymmetry and anormality indices introduced based on the theoretical analysis of the problem. The consequences for causal inference are discussed.
- Klíčová slova
- brain network, causality, climate network, random networks, reversed time series, temporal symmetry, time reversal, vector autoregressive process,
- Publikační typ
- časopisecké články MeSH
- Klíčová slova
- data report, fMRI, multiple sclerosis, neurorehabilitation, open access,
- Publikační typ
- časopisecké články MeSH
Functional connectivity analysis of resting-state fMRI data has recently become one of the most common approaches to characterizing individual brain function. It has been widely suggested that the functional connectivity matrix is a useful approximate representation of the brain's connectivity, potentially providing behaviorally or clinically relevant markers. However, functional connectivity estimates are known to be detrimentally affected by various artifacts, including those due to in-scanner head motion. Moreover, as individual functional connections generally covary only very weakly with head motion estimates, motion influence is difficult to quantify robustly, and prone to be neglected in practice. Although the use of individual estimates of head motion, or group-level correlation of motion and functional connectivity has been suggested, a sufficiently sensitive measure of individual functional connectivity quality has not yet been established. We propose a new intuitive summary index, Typicality of Functional Connectivity, to capture deviations from standard brain functional connectivity patterns. In a resting-state fMRI dataset of 245 healthy subjects, this measure was significantly correlated with individual head motion metrics. The results were further robustly reproduced across atlas granularity, preprocessing options, and other datasets, including 1,081 subjects from the Human Connectome Project. In principle, Typicality of Functional Connectivity should be sensitive also to other types of artifacts, processing errors, and possibly also brain pathology, allowing extensive use in data quality screening and quantification in functional connectivity studies as well as methodological investigations.
- Klíčová slova
- atlas, functional connectivity, motion, quality, rs-fMRI,
- MeSH
- artefakty MeSH
- atlasy jako téma * MeSH
- datové soubory jako téma * MeSH
- dospělí MeSH
- hlava - pohyby MeSH
- konektom * metody normy MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody normy MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování fyziologie MeSH
- počítačové zpracování obrazu * metody normy MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Maximum entropy estimation is of broad interest for inferring properties of systems across many disciplines. Using a recently introduced technique for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entropies, we show how this can be used to estimate the direct network connectivity between interacting units from observed activity. As a generic example, we consider phase oscillators and show that our approach is typically superior to simply using the mutual information. In addition, we propose a nonparametric formulation of connected informations, used to test the explanatory power of a network description in general. We give an illustrative example showing how this agrees with the existing parametric formulation, and demonstrate its applicability and advantages for resting-state human brain networks, for which we also discuss its direct effective connectivity. Finally, we generalize to continuous random variables and vastly expand the types of information-theoretic quantities one can condition on. This allows us to establish significant advantages of this approach over existing ones. Not only does our method perform favorably in the undersampled regime, where existing methods fail, but it also can be dramatically less computationally expensive as the cardinality of the variables increases.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH