Nejvíce citovaný článek - PubMed ID 21505172
Atrial fibrillation (AF), the most common cardiac arrhythmia is associated with increased morbidity and mortality. The higher mortality is due to the risk of heart failure and cardioembolic events. This in-depth review focuses on the strategies and efficacy of catheter ablation for non-paroxysmal atrial fibrillation. The main medical databases were searched for contemporary studies on catheter ablation for non-paroxysmal AF. Catheter ablation is currently proven to be the most effective treatment for AF and consists of pulmonary vein isolation as the cornerstone plus additional ablations. In terms of SR maintenance, it is less effective in non-paroxysmal AF than in paroxysmal patients. but the clinical benefit in non-paroxysmal patients is substantially higher. Since pulmonary vein isolation is ineffective, a variety of techniques have been developed, e.g. linear ablations, ablation of complex atrial fractionated electrograms, etc. Another paradox consists in the technique of catheter ablation. Despite promising results in early observation studies, further randomized studies have not confirmed the initial enthusiasm. Recently, a new approach, pulsed-field ablation, appears promising. This is an in-depth summary of current technologies and techniques for the ablation of non-paroxysmal AF. We discuss the benefits, risks and implications in the treatment of patients with non-paroxysmal AF.
- Klíčová slova
- atrial fibrillation, catheter ablation, pulmonary vein isolation, radiofrequency ablation,
- MeSH
- elektrofyziologické techniky kardiologické metody MeSH
- fibrilace síní * MeSH
- katetrizační ablace * metody MeSH
- lidé MeSH
- recidiva MeSH
- venae pulmonales * chirurgie MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.
- MeSH
- benchmarking * MeSH
- jizva MeSH
- lidé MeSH
- nemoci převodního systému srdečního MeSH
- počítačová simulace MeSH
- srdeční síně * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH