Nejvíce citovaný článek - PubMed ID 21547257
CCL5/RANTES gene polymorphisms in Slavonic patients with myocardial infarction
Chemokines, including RANTES, play a crucial role in the processes of inflammation during cardiovascular disorders, including myocardial infarction, disease progression and complications. This study aimed to evaluate the role of RANTES -403G/A polymorphism and levels in circulation in processes of development and progression of myocardial infarction and cardiogenic shock. A total of 609 patients with ST-segment elevation myocardial infarction, 43 patients with cardiogenic shock and 130 control subjects were enrolled in the study. RANTES -403G/A promoter polymorphism and baseline serum RANTES levels were analyzed. In the present study, we associated RANTES -403G/A promoter polymorphism with acute heart failure in patients with myocardial infarction (p = 0.006) and ejection fraction 3 months after MI onset (p = 0.02). Further, a difference in circulating RANTES levels among controls and STEMI subjects, and a relation of serum levels with acute heart failure was observed (p = 0.03, p = 0.003, respectively). We found a significant difference when comparing cardiogenic shock patients and controls (p < 0.001), with the most significant difference between cardiogenic shock and AHF subgroup of STEMI patients (p < 0.001). We observed a decreasing tendency of serum RANTES levels with the severity of myocardial infarction and progression, with the lowest levels in patients with cardiogenic shock (cutoff level ≥80.4 ng/ml). Our results suggest the role of RANTES as a potential biomarker of cardiogenic shock and acute heart failure in the hospital phase after myocardial infarction.
- MeSH
- analýza přežití MeSH
- biologické markery krev MeSH
- chemokin CCL5 krev genetika MeSH
- dospělí MeSH
- infarkt myokardu krev genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kardiogenní šok krev genetika patologie MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- progrese nemoci MeSH
- promotorové oblasti (genetika) * MeSH
- senioři MeSH
- srdeční selhání genetika patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- chemokin CCL5 MeSH
MicroRNAs (miRNAs) are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single nucleotide polymorphisms (SNPs) within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role. Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists, antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression.
- MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- myokard imunologie metabolismus MeSH
- plíce imunologie metabolismus MeSH
- zánět imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mikro RNA MeSH