Nejvíce citovaný článek - PubMed ID 21564548
Enzymatic characterization and molecular modeling of an evolutionarily interesting fungal β-N-acetylhexosaminidase
β-N-Acetylhexosaminidase from Talaromyces flavus (TfHex; EC 3.2.1.52) is an exo-glycosidase with dual activity for cleaving N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) units from carbohydrates. By targeting a mutation hotspot of the active site residue Glu332, we prepared a library of ten mutant variants with their substrate specificity significantly shifted towards GlcNAcase activity. Suitable mutations were identified by in silico methods. We optimized a microtiter plate screening method in the yeast Pichia pastoris expression system, which is required for the correct folding of tetrameric fungal β-N-acetylhexosaminidases. While the wild-type TfHex is promiscuous with its GalNAcase/GlcNAcase activity ratio of 1.2, the best single mutant variant Glu332His featured an 8-fold increase in selectivity toward GlcNAc compared with the wild-type. Several prepared variants, in particular Glu332Thr TfHex, had significantly stronger transglycosylation capabilities than the wild-type, affording longer chitooligomers - they behaved like transglycosidases. This study demonstrates the potential of mutagenesis to alter the substrate specificity of glycosidases.
- Klíčová slova
- Pichia pastoris, Talaromyces flavus, site-directed mutagenesis, site-saturation mutagenesis, substrate specificity, β-N-acetylhexosaminidase,
- MeSH
- acetylgalaktosamin metabolismus MeSH
- acetylglukosamin * metabolismus MeSH
- acetylglukosaminidasa MeSH
- beta-N-acetylhexosaminidasy * metabolismus MeSH
- kinetika MeSH
- mutace MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylgalaktosamin MeSH
- acetylglukosamin * MeSH
- acetylglukosaminidasa MeSH
- beta-N-acetylhexosaminidasy * MeSH
BACKGROUND: β-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum β-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. RESULTS: Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. CONCLUSIONS: The main variable regions in β-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial β-N-acetylhexosaminidases.
- MeSH
- beta-N-acetylhexosaminidasy chemie metabolismus MeSH
- fylogeneze MeSH
- glykosylace MeSH
- katalytická doména MeSH
- kinetika MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- reprodukovatelnost výsledků MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- substrátová specifita MeSH
- Talaromyces enzymologie MeSH
- výpočetní biologie * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-N-acetylhexosaminidasy MeSH