Most cited article - PubMed ID 21660931
Population history of the Red Sea--genetic exchanges between the Arabian Peninsula and East Africa signaled in the mitochondrial DNA HV1 haplogroup
Investigation into the nexus of human-environmental behavior has seen increasing collaboration of archaeologists, historians, and paleo-scientists. However, many studies still lack interdisciplinarity and overlook incompatibilities in spatiotemporal scaling of environmental and societal data and their uncertainties. Here, we argue for a strengthened commitment to collaborative work and introduce the "dahliagram" as a tool to analyze and visualize quantitative and qualitative knowledge from diverse disciplinary sources and epistemological backgrounds. On the basis of regional cases of past human mobility in eastern Africa, Inner Eurasia, and the North Atlantic, we develop three dahliagrams that illustrate pull and push factors underlying key phases of population movement across different geographical scales and over contrasting periods of time since the end of the last Ice Age. Agnostic to analytical units, dahliagrams offer an effective tool for interdisciplinary investigation, visualization, and communication of complex human-environmental interactions at a diversity of spatiotemporal scales.
- MeSH
- Communication * MeSH
- Humans MeSH
- Research Design MeSH
- Knowledge * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
African history has been significantly influenced by the Sahara, which has represented a barrier for migrations of all living beings, including humans. Major exceptions were the gene flow events that took place between North African and sub-Saharan populations during the so-called African Humid Periods, especially in the Early Holocene (11.5 to 5.5 thousand years ago), and more recently in connection with trans-Saharan commercial routes. In this study, we describe mitochondrial DNA (mtDNA) diversity of human populations from both sides of the Sahara Desert, i.e., both from North Africa and the Sahel/Savannah belt. The final dataset of 7213 mtDNA sequences from 134 African populations encompasses 470 newly collected and 6743 previously published samples, which were analyzed using descriptive methods and Bayesian statistics. We completely sequenced 26 mtDNAs from sub-Saharan samples belonging to the Eurasian haplogroup N1. Analyses of these N1 mitogenomes revealed their possible routes to the Sahel, mostly via Bab el-Mandab. Our results indicate that maternal gene flow must have been important in this circum-Saharan space, not only within North Africa and the Sahel/Savannah belt but also between these two regions.
- Keywords
- North Africa, Sahel/Savannah belt, mtDNA diversity, population history,
- MeSH
- Bayes Theorem MeSH
- Black People * MeSH
- Humans MeSH
- DNA, Mitochondrial * genetics MeSH
- Gene Flow MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Africa, Northern MeSH
- Names of Substances
- DNA, Mitochondrial * MeSH
At the crossroads between Africa and Eurasia, Arabia is necessarily a melting pot, its peoples enriched by successive gene flow over the generations. Estimating the timing and impact of these multiple migrations are important steps in reconstructing the key demographic events in the human history. However, current methods based on genome-wide information identify admixture events inefficiently, tending to estimate only the more recent ages, as here in the case of admixture events across the Red Sea (~8-37 generations for African input into Arabia, and 30-90 generations for "back-to-Africa" migrations). An mtDNA-based founder analysis, corroborated by detailed analysis of the whole-mtDNA genome, affords an alternative means by which to identify, date and quantify multiple migration events at greater time depths, across the full range of modern human history, albeit for the maternal line of descent only. In Arabia, this approach enables us to infer several major pulses of dispersal between the Near East and Arabia, most likely via the Gulf corridor. Although some relict lineages survive in Arabia from the time of the out-of-Africa dispersal, 60 ka, the major episodes in the peopling of the Peninsula took place from north to south in the Late Glacial and, to a lesser extent, the immediate post-glacial/Neolithic. Exchanges across the Red Sea were mainly due to the Arab slave trade and maritime dominance (from ~2.5 ka to very recent times), but had already begun by the early Holocene, fuelled by the establishment of maritime networks since ~8 ka. The main "back-to-Africa" migrations, again undetected by genome-wide dating analyses, occurred in the Late Glacial period for introductions into eastern Africa, whilst the Neolithic was more significant for migrations towards North Africa.
- MeSH
- Principal Component Analysis MeSH
- History, Ancient MeSH
- Demography history MeSH
- Founder Effect MeSH
- Phylogeny MeSH
- Genomics MeSH
- Haplotypes MeSH
- Humans MeSH
- Human Migration history MeSH
- DNA, Mitochondrial genetics MeSH
- Gene Flow * MeSH
- Check Tag
- History, Ancient MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Africa MeSH
- Arabia MeSH
- Names of Substances
- DNA, Mitochondrial MeSH