Most cited article - PubMed ID 21787706
The effect of oxime reactivators on muscarinic receptors: functional and binding examinations
A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.
- Keywords
- Acute toxicity, Hydrolysis, Nerve agent A-234, Reactivation, Therapy,
- MeSH
- Acetylcholinesterase MeSH
- Antidotes pharmacology MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors toxicity MeSH
- Phosphorus MeSH
- Rats MeSH
- Oxygen MeSH
- Humans MeSH
- Oximes pharmacology MeSH
- Pralidoxime Compounds * MeSH
- Pyridinium Compounds pharmacology MeSH
- Cholinesterase Reactivators * pharmacology MeSH
- Taurine analogs & derivatives MeSH
- Trimedoxime pharmacology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 2-(N-cyclohexylamino)ethanesulfonic acid MeSH Browser
- Acetylcholinesterase MeSH
- Antidotes MeSH
- asoxime chloride MeSH Browser
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Phosphorus MeSH
- Oxygen MeSH
- N,N'-monomethylenebis(pyridiniumaldoxime) MeSH Browser
- Oximes MeSH
- pralidoxime MeSH Browser
- Pralidoxime Compounds * MeSH
- Pyridinium Compounds MeSH
- Cholinesterase Reactivators * MeSH
- Taurine MeSH
- Trimedoxime MeSH
BACKGROUND: Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. METHODS: We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. RESULTS: Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. CONCLUSION: Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking.
- Keywords
- Acetylcholine, acetylcholinesterase, muscarinic receptor subtypes, pharmacotherapy,
- MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Receptor Cross-Talk drug effects MeSH
- Humans MeSH
- Receptors, Muscarinic drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Cholinesterase Inhibitors MeSH
- Receptors, Muscarinic MeSH