Nejvíce citovaný článek - PubMed ID 22135291
Recent progress in engineering highly promising biocatalysts has increasingly involved machine learning methods. These methods leverage existing experimental and simulation data to aid in the discovery and annotation of promising enzymes, as well as in suggesting beneficial mutations for improving known targets. The field of machine learning for protein engineering is gathering steam, driven by recent success stories and notable progress in other areas. It already encompasses ambitious tasks such as understanding and predicting protein structure and function, catalytic efficiency, enantioselectivity, protein dynamics, stability, solubility, aggregation, and more. Nonetheless, the field is still evolving, with many challenges to overcome and questions to address. In this Perspective, we provide an overview of ongoing trends in this domain, highlight recent case studies, and examine the current limitations of machine learning-based methods. We emphasize the crucial importance of thorough experimental validation of emerging models before their use for rational protein design. We present our opinions on the fundamental problems and outline the potential directions for future research.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Current biological and chemical research is increasingly dependent on the reusability of previously acquired data, which typically come from various sources. Consequently, there is a growing need for database systems and databases stored in them to be interoperable with each other. One of the possible solutions to address this issue is to use systems based on Semantic Web technologies, namely on the Resource Description Framework (RDF) to express data and on the SPARQL query language to retrieve the data. Many existing biological and chemical databases are stored in the form of a relational database (RDB). Converting a relational database into the RDF form and storing it in a native RDF database system may not be desirable in many cases. It may be necessary to preserve the original database form, and having two versions of the same data may not be convenient. A solution may be to use a system mapping the relational database to the RDF form. Such a system keeps data in their original relational form and translates incoming SPARQL queries to equivalent SQL queries, which are evaluated by a relational-database system. This review compares different RDB-to-RDF mapping systems with a primary focus on those that can be used free of charge. In addition, it compares different approaches to expressing RDB-to-RDF mappings. The review shows that these systems represent a viable method providing sufficient performance. Their real-life performance is demonstrated on data and queries coming from the neXtProt project.
- Klíčová slova
- RDB-to-RDF mapping, Relational database, Resource Description Framework, SPARQL,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH