Nejvíce citovaný článek - PubMed ID 22409604
Magnesium azaphthalocyanines: an emerging family of excellent red-emitting fluorophores
Phthalocyanines play fundamental roles as electron-acceptors in many different fields; thus, the study of structural features affecting electron-accepting properties of these macrocycles is highly desirable. A series of low-symmetry zinc(II) phthalocyanines, in which one, three, or four benzene rings were replaced for pyrazines, was prepared and decorated with electron-neutral (alkylsulfanyl) or strongly electron-withdrawing (alkylsulfonyl) groups to study the role of the macrocyclic core as well as the effect of peripheral substituents. Electrochemical studies revealed that the first reduction potential (Ered1) is directly proportional to the number of pyrazine units in the macrocycle. Introduction of alkylsulfonyl groups had a very strong effect and resulted in a strongly electron-deficient macrocycle with Ered1 = -0.48 V vs SCE (in THF). The efficiency of intramolecular-charge transfer (ICT) from the peripheral bis(2-methoxyethyl)amine group to the macrocycle was monitored as a decrease in the sum of ΦΔ + ΦF and correlated well with the determined Ered1 values. The strongest quenching by ICT was observed for the most electron-deficient macrocycle. Importantly, an obvious threshold at -1.0 V vs SCE was observed over which no ICT occurs. Disclosed results may substantially help to improve the design of electron-donor systems based on phthalocyanines.
- Publikační typ
- časopisecké články MeSH
Magnesium complexes of phthalocyanines (Pcs) and their aza-analogues have a great potential in medical applications or fluorescence detection. They are known to demetallate to metal-free ligands in acidic environments, however, detailed investigation of this process and its possible prevention is lacking. In this work, a conversion of lipophilic and water-soluble magnesium complexes of Pcs and tetrapyrazinoporphyrazines (TPyzPzs) to metal-free ligands was studied in relation to the acidity of the environment (organic solvent, water) including the investigation of the role of delivery systems (microemulsion or liposomes) in improvement in their acido-stability. The mechanism of the demetallation in organic solvents was based on an acidoprotolytic mechanism with the protonation of the azomethine nitrogen as the first step and a subsequent conversion to non-protonated metal-free ligands. In water, the mechanism seemed to be solvoprotolytic without any protonated intermediate. The water-soluble magnesium complexes were stable in a buffer with a physiological pH 7.4 while a time-dependent demetallation was observed in acidic pH. The demetallation was immediate at pH < 2 while the full conversion to metal-free ligand was done within 10 min and 45 min for TPyzPzs at pH 3 and pH 4, respectively. Incorporation of lipophilic magnesium complexes into microemulsion or liposomes substantially decreased the rate of the demetallation with the latter delivery system being much more efficient in the protection from the acidic environment. A comparison of two different macrocyclic cores revealed significantly higher kinetic inertness of magnesium TPyzPz complexes than their Pc analogues.
- Klíčová slova
- dissociation, liposomes, magnesium phthalocyanine,
- Publikační typ
- časopisecké články MeSH
Liposomes are able to load a range of cargos and have been used for drug delivery applications, including for stimuli-triggered drug release. Here, we describe an approach for imparting near infrared (NIR) light-triggered release to pre-formed liposomes, using a newly-synthesized cationic, amphiphilic phthalocyanine. When simply mixed in aqueous solution with cargo-loaded liposomes, the cationic amphiphilic phthalocyanine, but not a cationic hydrophilic azaphthalocyanine, spontaneously incorporates into the liposome bilayer. This enables subsequent release of loaded cargo (doxorubcin or basic orange) upon irradiation with NIR light. The rate of release could be altered by varying the amount of photosensitizer added to the liposomes. In the absence of NIR light exposure, stable cargo loading of the liposomes was maintained. Introduction.
- Publikační typ
- časopisecké články MeSH