Most cited article - PubMed ID 22642689
Why are there more arboreal ant species in primary than in secondary tropical forests?
UNLABELLED: Arboreal ants are ecologically important in tropical forests, but there are few studies using DNA markers to examine their population and colony structure. Colonies of the arboreal turtle ant Cephalotes goniodontus create trail networks through the canopy of the tropical forest, in dense vegetation where it is difficult to determine how long a nest is used and how neighboring colonies partition space. We monitored 53 nest sites for up to six years and, using seven microsatellite markers, genotyped samples of workers collected at or near 41 nests over 1-4 years. We calculated average relatedness within samples collected at a given location, and between samples collected at the same location in successive years, and performed pedigree analysis to predict the number of queens that produced each sample of workers. Fifteen samples were highly related (r ≥ 0.6) from single colonies, of which 11 were monogynous and the remaining four had two queens; 19 were of intermediate relatedness (0.1 ≤ r < 0.6) with 1-6 queens, and 7 were groups of unrelated workers (r < 0.1) from at least 4 queens. Colonies persisted at the same nest site for 2-6 years. The smallest distance we found separating nests of different colonies was 16.2 m. It appears that different colonies may share foraging trails. Our study demonstrates the feasibility of using a cost-efficient genotyping method to provide information on colony structure and life history of ant species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00040-024-00974-3.
- Keywords
- Arboreal ants, Cephalotes, Microsatellites, Relatedness,
- Publication type
- Journal Article MeSH
Abiotic and biotic factors structure species assembly in ecosystems both horizontally and vertically. However, the way community composition changes along comparable horizontal and vertical distances in complex three-dimensional habitats, and the factors driving these patterns, remains poorly understood. By sampling ant assemblages at comparable vertical and horizontal spatial scales in a tropical rainforest, we tested hypotheses that predicted differences in vertical and horizontal turnover explained by different drivers in vertical and horizontal space. These drivers included environmental filtering, such as microclimate (temperature, humidity, and photosynthetic photon flux density) and microhabitat connectivity (leaf area), which are structured differently across vertical and horizontal space. We found that both ant abundance and richness decreased significantly with increasing vertical height. Although the dissimilarity between ant assemblages increased with vertical distance, indicating a clear distance-decay pattern, the dissimilarity was higher horizontally where it appeared independent of distance. The pronounced horizontal and vertical structuring of ant assemblages across short distances is likely explained by a combination of microclimate and microhabitat connectivity. Our results demonstrate the importance of considering three-dimensional spatial variation in local assemblages and reveal how highly diverse communities can be supported by complex habitats.
- Keywords
- community ecology, distance‐decay, habitat complexity, microclimate, species turnover, vertical stratification,
- Publication type
- Journal Article MeSH
Research on canopy arthropods has progressed from species inventories to the study of their interactions and networks, enhancing our understanding of how hyper-diverse communities are maintained. Previous studies often focused on sampling individual tree species, individual trees or their parts. We argue that such selective sampling is not ideal when analyzing interaction network structure, and may lead to erroneous conclusions. We developed practical and reproducible sampling guidelines for the plot-based analysis of arthropod interaction networks in forest canopies. Our sampling protocol focused on insect herbivores (leaf-chewing insect larvae, miners and gallers) and non-flying invertebrate predators (spiders and ants). We quantitatively sampled the focal arthropods from felled trees, or from trees accessed by canopy cranes or cherry pickers in 53 0.1 ha forest plots in five biogeographic regions, comprising 6,280 trees in total. All three methods required a similar sampling effort and provided good foliage accessibility. Furthermore, we compared interaction networks derived from plot-based data to interaction networks derived from simulated non-plot-based data focusing either on common tree species or a representative selection of tree families. All types of non-plot-based data showed highly biased network structure towards higher connectance, higher web asymmetry, and higher nestedness temperature when compared with plot-based data. Furthermore, some types of non-plot-based data showed biased diversity of the associated herbivore species and specificity of their interactions. Plot-based sampling thus appears to be the most rigorous approach for reconstructing realistic, quantitative plant-arthropod interaction networks that are comparable across sites and regions. Studies of plant interactions have greatly benefited from a plot-based approach and we argue that studies of arthropod interactions would benefit in the same way. We conclude that plot-based studies on canopy arthropods would yield important insights into the processes of interaction network assembly and dynamics, which could be maximised via a coordinated network of plot-based study sites.
- MeSH
- Arthropods physiology MeSH
- Host-Parasite Interactions * MeSH
- Larva physiology MeSH
- Forests MeSH
- Plants parasitology MeSH
- Trees parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities.
- MeSH
- Biodiversity * MeSH
- Behavior, Animal MeSH
- Rainforest MeSH
- Ecosystem MeSH
- Ants * MeSH
- Forests * MeSH
- Trees * MeSH
- Tropical Climate * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- New Guinea MeSH
The present checklist of ants (Hymenoptera: Formicidae) of Ambon is the first comprehensive overview of ant species recorded on the island during the last 150 years. The species list is based on literature and museum collections' records combined with data from our field survey in 2010. In total, there are 74 ant species and subspecies representing 34 genera and six subfamilies known from Ambon. Five of the species found in undisturbed forest were exotic and indicate the overall habitat degradation on the island. The largest proportion of Ambon ant fauna are species with affinities to the Oriental region and species of Oriental-Austro-Melanesian origin. At least 20% of the species are regional endemics. In comparison to other islands in the region, the Ambon fauna seems more diverse and better sampled; however it is clear that a large part of it still remains to be described.
- Keywords
- Indo-Australia, Indonesia, Melanesia, Moluccas, Wallacea, biodiversity, biogeography, habitat preferences, invasive species, species distributions, taxonomy,
- Publication type
- Journal Article MeSH