Nejvíce citovaný článek - PubMed ID 22877926
Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum-based anticancer drugs.
- Klíčová slova
- antitumor agents, hydrolysis, platinum(IV) complexes, prodrugs, reduction,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Our study demonstrates that Pt(iv) derivative of cisplatin, with two axial PhB ligands, ctc-[Pt(NH3)2(PhB)2Cl2], is a very potent cytotoxic agent against many different human cancer cell lines and is up to 100 fold more potent than cisplatin, and significantly more potent than the Pt(iv) derivatives of cisplatin with either two hydroxido, two acetato or two valproato ligands. The high potency of this compound (and some others) is due to several factors including enhanced internalization, probably driven by "synergistic accumulation" of both the Pt moiety and the phenylbutyrate, that correlates with enhanced DNA binding and cytotoxicity. ctc-[Pt(NH3)2(PhB)2Cl2] inhibits 60-70% HDAC activity in cancer cells, at levels below the IC50 values of PhB, suggesting synergism between Pt and PhB. Mechanistically, ctc-[Pt(NH3)2(PhB)2Cl2] induces activation of caspases (3 and 9) triggering apoptotic signaling via the mitochondrial pathway. Data also suggest that the antiproliferative effect of ctc-[Pt(NH3)2(PhB)2Cl2] may not depend of p53. Pt(iv) derivatives of cisplatin with either two axial PhB or valproate ligands are more potent than their oxaliplatin analogs. ctc-[Pt(NH3)2(PhB)2Cl2] is significantly more potent than its valproate analog ctc-[Pt(NH3)2(VPA)2Cl2]. These compounds combine multiple effects such as efficient uptake of both Pt and PhB with DNA binding, HDAC inhibition and activation of caspases to effectively kill cancer cells.
- Publikační typ
- časopisecké články MeSH
The platinum(II) complexes trans-[PtCl₂(Ln)₂]∙xSolv 1-13 (Solv = H₂O or CH3OH), involving N6-benzyladenosine-based N-donor ligands, were synthesized; L(n) stands for N6-(2-methoxybenzyl)adenosine (L₁, involved in complex 1), N6-(4-methoxy-benzyl)adenosine (L₂, 2), N6-(2-chlorobenzyl)adenosine (L₃, 3), N6-(4-chlorobenzyl)-adenosine (L₄, 4), N6-(2-hydroxybenzyl)adenosine (L₅, 5), N6-(3-hydroxybenzyl)-adenosine (L₆, 6), N6-(2-hydroxy-3-methoxybenzyl)adenosine (L₇, 7), N6-(4-fluoro-benzyl)adenosine (L₈, 8), N6-(4-methylbenzyl)adenosine (L₉, 9), 2-chloro-N6-(3-hydroxy-benzyl)adenosine (L₁₀, 10), 2-chloro-N6-(4-hydroxybenzyl)adenosine (L₁₁, 11), 2-chloro-N6-(2-hydroxy-3-methoxybenzyl)adenosine (L₁₂, 12) and 2-chloro-N6-(2-hydroxy-5-methylbenzyl)adenosine (L₁₃, 13). The compounds were characterized by elemental analysis, mass spectrometry, IR and multinuclear (¹H-, ¹³C-, ¹⁹⁵Pt- and ¹⁵N-) and two-dimensional NMR spectroscopy, which proved the N7-coordination mode of the appropriate N6-benzyladenosine derivative and trans-geometry of the title complexes. The complexes 1-13 were found to be non-toxic in vitro against two selected human cancer cell lines (HOS and MCF7; with IC₅₀ > 50.0 µM). However, they were found (by ESI-MS study) to be able to interact with the physiological levels of the sulfur-containing biogenic biomolecule L-methionine by a relatively simple 1:1 exchange mechanism (one L(n) molecule was replaced by one L-methionine molecule), thus forming a mixed-nitrogen/sulfur-ligand dichlorido-platinum(II) coordination species.
- MeSH
- benzylové sloučeniny MeSH
- hmotnostní spektrometrie MeSH
- inhibiční koncentrace 50 MeSH
- kinetin chemie farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- nádorové buněčné linie MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- organoplatinové sloučeniny chemie farmakologie MeSH
- protinádorové látky chemie farmakologie MeSH
- puriny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzylaminopurine MeSH Prohlížeč
- benzylové sloučeniny MeSH
- kinetin MeSH
- ligandy MeSH
- organoplatinové sloučeniny MeSH
- protinádorové látky MeSH
- puriny MeSH