Most cited article - PubMed ID 22888799
Women and the management of acute coronary syndrome
Experimental and clinical studies have clearly demonstrated significant sex differences in myocardial structure and function, both under physiological and pathological conditions. The best example are significant sex differences in the cardiac tolerance to ischemia/reperfusion injury: pre-menopausal adult female hearts are more resistant as compared to the male myocardium. The importance of these findings is supported by the fact that the number of studies dealing with this issue increased significantly in recent years. Detailed molecular and cellular mechanisms responsible for sex differences are yet to be elucidated; however, it has been stressed that the differences cannot be explained only by the effect of estrogens. In recent years, a promising new hypothesis has been developed, suggesting that mitochondria may play a significant role in the sex differences in cardiac tolerance to oxygen deprivation. However, one is clear already today: sex differences are so important that they should be taken into consideration in the clinical practice for the selection of the optimal diagnostic and therapeutic strategy in the treatment of ischemic heart disease. The present review attempts to summarize the progress in cardiovascular research on sex-related differences in cardiac tolerance to oxygen deprivation during the last 40 years, i.e. from the first experimental observation. Particular attention was paid to the sex-related differences of the normal heart, sex-dependent tolerance to ischemia-reperfusion injury, the role of hormones and, finally, to the possible role of cardiac mitochondria in the mechanism of sex-dependent differences in cardiac tolerance to ischemia/reperfusion injury. Key words: Female heart, Cardiac hypoxic tolerance, Ischemia-reperfusion injury, Sex differences.
- MeSH
- Oxygen metabolism MeSH
- Humans MeSH
- Myocardium metabolism pathology MeSH
- Sex Characteristics * MeSH
- Myocardial Reperfusion Injury metabolism physiopathology MeSH
- Sex Factors MeSH
- Mitochondria, Heart metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Oxygen MeSH
In 2023, six decades have elapsed since the first experimental work on the heart muscle was published, in which a member of the Institute of Physiology of the Czech Academy of Sciences participated as an author; Professor Otakar Poupa was the founder and protagonist of this research domain. Sixty years - more than half of the century - is certainly significant enough anniversary that is worth looking back and reflecting on what was achieved during sometimes very complicated periods of life. It represents the history of an entire generation of experimental cardiologists; it is possible to learn from its successes and mistakes. The objective of this review is to succinctly illuminate the scientific trajectory of an experimental cardiological department over a 60-year span, from its inaugural publication to the present. The old truth - historia magistra vitae - is still valid. Keywords: Heart, Adaptation, Development, Hypoxia, Protection.
- MeSH
- Academies and Institutes * history MeSH
- Biomedical Research * history trends MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Physiology history MeSH
- Cardiology history trends MeSH
- Humans MeSH
- Heart physiology MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
- Geographicals
- Czech Republic MeSH
Most of the experimental studies have revealed that female heart is more tolerant to ischemia/reperfusion (I/R) injury as compared with the male myocardium. It is widely accepted that mitochondrial dysfunction, and particularly mitochondrial permeability transition pore (MPTP) opening, plays a major role in determining the extent of cardiac I/R injury. The aim of the present study was, therefore, to analyze (i) whether calcium-induced swelling of cardiac mitochondria is sex-dependent and related to the degree of cardiac tolerance to I/R injury and (ii) whether changes in MPTP components-cyclophilin D (CypD) and ATP synthase-can be involved in this process. We have observed that in mitochondria isolated from rat male and female hearts the MPTP has different sensitivity to the calcium load. Female mitochondria are more resistant both in the extent and in the rate of the mitochondrial swelling at higher calcium concentration (200 µM). At low calcium concentration (50 µM) no differences were observed. Our data further suggest that sex-dependent specificity of the MPTP is not the result of different amounts of ATP synthase and CypD, or their respective ratio in mitochondria isolated from male and female hearts. Our results indicate that male and female rat hearts contain comparable content of MPTP and its regulatory protein CypD; parallel immunodetection revealed also the same contents of adenine nucleotide translocator or voltage-dependent anion channel. Increased resistance of female heart mitochondria thus cannot be explained by changes in putative components of MPTP, and rather reflects regulation of MPTP function.
- Keywords
- Calcium-induced swelling, Heart, Mitochondrial permeability transition pore, Sex difference,
- MeSH
- Rats MeSH
- Mitochondrial Permeability Transition Pore MeSH
- Sex Factors * MeSH
- Mitochondria, Heart metabolism MeSH
- Mitochondrial Membrane Transport Proteins metabolism MeSH
- Calcium metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Mitochondrial Permeability Transition Pore MeSH
- Mitochondrial Membrane Transport Proteins MeSH
- Calcium MeSH
Ischaemic heart disease (IHD) is the most frequent cause of mortality among men and women. Many epidemiological studies have demonstrated that premenopausal women have a reduced risk for IHD compared with their male counterparts. The incidence of IHD in women increases after menopause, suggesting that IHD is related to declining oestrogen levels. Experimental observations have confirmed the results of epidemiological studies investigating sex-specific differences in cardiac tolerance to ischaemia. Female sex appears also to favourably influence cardiac remodelling after ischaemia/reperfusion injury. Furthermore, sex-related differences in ischaemic tolerance of the adult myocardium can be influenced by interventions during the early phases of ontogenetic development. Detailed mechanisms of these sex-related differences remain unknown; however, they involve the genomic and non-genomic effects of sex steroid hormones, particularly the oestrogens, which have been the most extensively studied. Although the protective effects of oestrogen have many potential therapeutic implications, clinical trials have shown that oestrogen replacement in postmenopausal women may actually increase the incidence of IHD. The results of these trials have illustrated the complexity underlying the mechanisms involved in sex-related differences in cardiac tolerance to ischaemia. Sex-related differences in cardiac sensitivity to ischaemia/reperfusion injury may also influence therapeutic strategies in women with acute coronary syndrome. Women undergo coronary intervention less frequently and a lower proportion of women receive evidence-based therapy compared with men. Although our understanding of this important topic has increased in recent years, there is an urgent need for intensive experimental and clinical research to develop female-specific therapeutic strategies. Only then we will be able to offer patients better evidence-based treatment, a better quality of life and lower mortality.
- Keywords
- acute coronary syndrome, cardioprotection, heart, ischaemia/reperfusion injury, oestrogen, sex differences, therapeutic implications,
- MeSH
- Acute Coronary Syndrome drug therapy metabolism physiopathology MeSH
- Androgens metabolism MeSH
- Estrogens metabolism MeSH
- Myocardial Ischemia drug therapy metabolism physiopathology MeSH
- Cardiovascular Agents therapeutic use MeSH
- Humans MeSH
- Evidence-Based Medicine * MeSH
- Myocardium metabolism MeSH
- Disease Susceptibility MeSH
- Sex Characteristics MeSH
- Myocardial Reperfusion Injury prevention & control MeSH
- Heart drug effects physiopathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Androgens MeSH
- Estrogens MeSH
- Cardiovascular Agents MeSH