Myxozoans are microscopical parasites widely distributed in fish, with over 2,600 described species, but their actual diversity is still underestimated. Among salmonids, more than 70 myxozoan species have been identified. This study focuses on species of Chloromyxum Mingazzini, 1890 that infect salmonid kidneys, particularly C. majori Yasutake et Wood, 1957 and C. schurovi Shulman et Ieshko, 2003. Despite their similar spore morphology, they exhibit distinct host preferences, tissue affinities and geographical distributions. Chloromyxum schurovi predominantly infects the renal tubules of Salmo salar Linnaues and S. trutta Linnaeus in Europe, while C. majori targets the glomeruli of Oncorhynchus mykiss (Walbaum) and O. tshawytscha (Walbaum) in North America. The sequence data for C. majori and C. schurovi have been either missing or questionable. In our study, we examined the kidneys of two salmonid species for chloromyxid infections, using both morphological and molecular data to characterise Chloromyxum species in salmonids. The sequence of C. schurovi obtained in our study did not match the previously published parasite data. Instead, it clustered as an independent lineage sister to the Paramyxidium Freeman et Kristmundsson, 2018 clade gathering the species from various fish organs, including the urinary tract. Our findings clarified the taxonomic origin of the previous C. schurovi sequence as Myxidium giardi Cépède, 1906, highlighting the risks associated with the presence of myxozoan blood stages in the bloodstream of their fish host and the challenges of non-specific PCR amplification. We redescribe C. schurovi, thus contributing to a better understanding of the diversity and phylogeny of kidney-infecting species of Chloromyxum.
- Keywords
- Myxozoan diversity, PCR screening, Salmo trutta, phylogeny,
- MeSH
- Phylogeny * MeSH
- Kidney parasitology MeSH
- Myxozoa * classification genetics anatomy & histology isolation & purification MeSH
- Fish Diseases * parasitology MeSH
- Parasitic Diseases, Animal * parasitology epidemiology MeSH
- Trout * parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
- Keywords
- B lymphocytes, RNAseq, T lymphocytes, adaptive immunity, immune evasion, immunoglobulin, parasite, teleost,
- MeSH
- Adaptive Immunity * MeSH
- Antiparasitic Agents pharmacology MeSH
- B-Lymphocytes immunology metabolism parasitology MeSH
- Immune Evasion MeSH
- Immunoglobulins immunology metabolism MeSH
- Host-Parasite Interactions MeSH
- Myxozoa drug effects immunology pathogenicity MeSH
- Fish Diseases immunology metabolism parasitology prevention & control MeSH
- Parasitic Diseases, Animal immunology metabolism parasitology prevention & control MeSH
- Immunity, Innate * MeSH
- Fishes immunology metabolism parasitology MeSH
- T-Lymphocytes immunology metabolism parasitology MeSH
- Vaccines pharmacology MeSH
- Aquaculture MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Antiparasitic Agents MeSH
- Immunoglobulins MeSH
- Vaccines MeSH
It is assumed that complex life cycles in cnidarian parasites belonging to the Myxozoa result from incorporation of vertebrates into simple life cycles exploiting aquatic invertebrates. However, nothing is known about the driving forces and implementation of this event, though it fostered massive diversification. We performed a comprehensive search for myxozoans in evolutionary ancient fishes (Chondrichthyes), and more than doubled existing 18S rDNA sequence data, discovering seven independent phylogenetic lineages. We performed cophylogenetic and character mapping methods in the largest monophyletic dataset and demonstrate that host and parasite phylogenies are strongly correlated, and that tectonic changes may explain phylogeographic clustering in recent skates and softnose skates, in the Atlantic. The most basal lineages of myxozoans inhabit the bile of chondrichthyans, an immunologically privileged site and protective niche, easily accessible from the gut via the bile duct. We hypothesize that feed-integration is a likely mechanism of host acquisition, an idea supported by feeding habits of chimaeras and ancient sharks and by multiple entries of different parasite lineages from invertebrates into the new host group. We provide exciting first insights into the early evolutionary history of ancient metazoan parasites in a host group that embodies more evolutionary distinctiveness than most other vertebrates.
- Keywords
- Chondrichthyes, cnidaria, co-diversification, co-phylogeny, feed-integration, migration, myxozoa, phylogeography,
- Publication type
- Journal Article MeSH
BACKGROUND: Myxozoa are extremely diverse microscopic parasites belonging to the Cnidaria. Their life-cycles alternate between vertebrate and invertebrate hosts, predominantly in aquatic habitats. Members of the phylogenetically well-defined Sphaerospora (sensu stricto) clade predominantly infect the urinary system of marine and freshwater fishes and amphibians. Sphaerosporids are extraordinary due to their extremely long and unique insertions in the variable regions of their 18S and 28S rDNA genes and due to the formation of motile proliferative stages in the hosts' blood. To date, DNA sequences of only 19 species have been obtained and information on the patterns responsible for their phylogenetic clustering is limited. METHODS: We screened 549 fish kidney samples from fish of various geographical locations, mainly in central Europe, to investigate sphaerosporid biodiversity microscopically and by 18S rDNA sequences. We performed multiple phylogenetic analyses to explore phylogenetic relationships and evolutionary trends within the Sphaerospora (s.s.) clade, by matching host and habitat features to the resultant 18S rDNA trees. The apparent co-clustering of species from related fish hosts inspired us to further investigate host-parasite co-diversification, using tree-based (CoRE-PA) and distance-based (ParaFit) methods. RESULTS: Our study considerably increased the number of 18S rDNA sequence data for Sphaerospora (s.s.) by sequencing 17 new taxa. Eight new species are described and one species (Sphaerospora diminuta Li & Desser, 1985) is redescribed, accompanied by sufficient morphological data. Phylogenetic analyses showed that sphaerosporids cluster according to their vertebrate host order and habitat, but not according to geography. Cophylogenetic analyses revealed a significant congruence between the phylogenetic trees of sphaerosporids and of their vertebrate hosts and identified Cypriniformes as a host group of multiple parasite lineages and with high parasite diversity. CONCLUSIONS: This study significantly contributed to our knowledge of the biodiversity and evolutionary history of the members of the Sphaerospora (s.s.) clade. The presence of two separate phylogenetic lineages likely indicates independent historical host entries, and the remarkable overlap of the larger clade with vertebrate phylogeny suggests important coevolutionary adaptations. Hyperdiversification of sphaerosporids in cypriniform hosts, which have undergone considerable radiations themselves, points to host-driven diversification.
- Keywords
- Host-parasite codiversification, Myxozoa, Phylogeny, Sphaerospora sensu stricto, Taxonomy, Teleost,
- MeSH
- Biodiversity * MeSH
- Biological Evolution MeSH
- Cnidaria MeSH
- Phylogeny * MeSH
- Myxozoa classification genetics isolation & purification physiology MeSH
- Fish Diseases parasitology MeSH
- Parasitic Diseases, Animal genetics parasitology MeSH
- DNA, Ribosomal genetics MeSH
- Fishes classification genetics parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Ribosomal MeSH
BACKGROUND: Myxozoans are metazoan parasites whose traditional spore morphology-based taxonomy conflicts DNA based phylogenies. Freshwater species of the genus Hoferellus are parasites of the excretory system, with several members infecting food and ornamental fish species, as well as amphibians. This study aims to increase our understanding of their molecular diversity and development, aspects about which little is known, and to generate a molecular diagnostic tool to discriminate between different pathogenic and non-pathogenic Hoferellus spp. METHODS: SSU and ITS rDNA phylogeny, along with morphological descriptions using light and electron microscopy were used to identify and characterize Hoferellus species collected from the urinary system of fishes and frogs. A PCR-based diagnostic assay was designed to differentiate between cryptic Hoferellus spp in cyprinid fishes commonly cultured in Central Europe. RESULTS: Our phylogenetic results separate the species of Hoferellus into two phylogenetic sublineages which are indistinguishable on the basis of generic morphological traits: 1) The Hoferellus sensu stricto sublineage, which is composed of the type species Hoferellus cyprini, Hoferellus carassii and a cryptic species, Hoferellus sp. detected only molecularly in common carp. 2) The Hoferellus sensu lato sublineage into which the new species we described in this study, Hoferellus gnathonemi sp. n. from the kidney of the elephantnose fish and Hoferellus anurae from reed frogs, are placed together with Hoferellus gilsoni previously sequenced from European eel. Apart from phylogenetic analyses, we also provide novel ultrastructural data on the phagocytotic nature of some Hoferellus plasmodia and on the elusive intracellular stages ascribed to the presporogonic development of this genus. CONCLUSIONS: We provide molecular evidence of the polyphyly of the genus Hoferellus and provide novel morphological details of its members. Based on the presented data, we revise and propose emendation of the genus Hoferellus.
- MeSH
- Cyprinidae MeSH
- Phylogeny MeSH
- Kidney pathology MeSH
- Molecular Sequence Data MeSH
- Myxozoa classification genetics isolation & purification ultrastructure MeSH
- Fish Diseases parasitology MeSH
- Parasitic Diseases, Animal parasitology MeSH
- DNA, Ribosomal chemistry genetics MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA veterinary MeSH
- Anura parasitology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Ribosomal MeSH
BACKGROUND: Swim bladder inflammation (SBI) is an important disease of common carp fingerlings in Central Europe. In the 1980s, its etiology was ascribed to multicellular proliferative stages of the myxozoan parasite Sphaerospora dykovae (formerly S. renicola). S. dykovae was reported to proliferate in the blood and in the swim bladder prior to the invasion of the kidney, where sporogony takes place. Due to the presence of emerging numbers of proliferative myxozoan blood stages at different carp culture sites in recent years we analysed cases of SBI, for the first time, using molecular diagnostics, to identify the myxozoan parasites present in diseased swim bladders. METHODS: We amplified myxozoan SSU rDNA in a non-specific approach and compared the species composition in swim bladders at culture sites where carp demonstrated 1. No signs of SBI, 2. Minor pathological changes, and 3. Heavy SBI. Based on DNA sequences, we determined the localisation and distribution of the most frequent species by in situ hybridisation, thereby determining which myxozoans are involved in SBI. RESULTS: Large multicellular myxozoan swim bladder stages characterised heavy SBI cases and were identified as S. dykovae, however, blood stages were predominantly represented by Sphaerospora molnari, whose numbers were greatly increased in carp with mild and heavy SBI, compared with SBI-free fish. S. molnari was found to invade different organs and cause inflammatory changes also in the absence of S. dykovae. One site with mild SBI cases was characterised by Buddenbrockia sp. infection in different organs and a general granulomatous response. CONCLUSIONS: We provide evidence that the etiology of SBI can vary in relation to culture site and disease severity and that emerging numbers of S. molnari in the blood represent an important co-factor or precondition for SBI.
- MeSH
- Time Factors MeSH
- Carps MeSH
- Cloning, Molecular MeSH
- Myxozoa classification genetics MeSH
- Fish Diseases parasitology pathology MeSH
- Parasitic Diseases, Animal parasitology pathology MeSH
- Prevalence MeSH
- Seasons MeSH
- Air Sacs parasitology pathology MeSH
- Inflammation parasitology pathology veterinary MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH