Nejvíce citovaný článek - PubMed ID 23305765
Are morphologic and functional consequences of status epilepticus in infant rats progressive?
The aim of the present study was to analyze the location of degenerating neurons in the dorsal (insular) claustrum (DCL, VCL) and the dorsal, intermediate and ventral endopiriform nucleus (DEn, IEn, VEn) in rat pups following lithium-pilocarpine status epilepticus (SE) induced at postnatal days [P]12, 15, 18, 21 and 25. The presence of Fluoro-Jade B-positive neurons was evaluated at 4, 12, 24, 48 h and 1 week later. A small number of degenerated neurons was observed in the CL, as well as in the DEn at P12 and P15. The number of degenerated neurons was increased in the CL as well as in the DEn at P18 and above and was highest at longer survival intervals. The CL at P15 and 18 contained a small or moderate number of degenerated neurons mainly close to the medial and dorsal margins also designated as DCl ("shell") while isolated degenerated neurons were distributed in the VCl ("core"). In P21 and 25, a larger number of degenerated neurons occurred in both subdivisions of the dorsal claustrum. The majority of degenerated neurons in the endopiriform nucleus were found in the intermediate and caudal third of the DEn. A small number of degenerated neurons was dispersed in the whole extent of the DEn with prevalence to its medial margin. Our results indicate that degenerated neurons in the claustrum CL and endopiriform nucleus are distributed mainly in subdivisions originating from the ventral pallium; their distribution correlates with chemoarchitectonics of both nuclei and with their intrinsic and extrinsic connections.
- Klíčová slova
- claustroamygdaloid complex, claustrum, endopiriform nucleus, neurodegeneration, ontogeny, status epilepticus,
- MeSH
- klaustrum * MeSH
- krysa rodu Rattus MeSH
- mozková kůra MeSH
- neurony MeSH
- status epilepticus * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Status epilepticus (SE) is the most common neurologic emergency in children. Both clinical and laboratory studies have demonstrated that SE in early life can cause brain damage and permanent behavioral abnormalities, trigger epileptogenesis, and interfere with normal brain development. In experimental rodent models, the consequences of seizures are dependent upon age, the model used, and seizure duration. In studies involving neonatal and infantile animals, the model used, experimental design, conditions during the experiment, and manipulation of animals can significantly affect the course of the experiments as well as the results obtained. Standardization of laboratory approaches, harmonization of scientific methodology, and improvement in data collection can improve the comparability of data among laboratories.
- Klíčová slova
- animal models, comorbidites, immature rodent, status epilepticus,
- MeSH
- laboratorní zvířata MeSH
- modely nemocí na zvířatech MeSH
- mozek MeSH
- status epilepticus * MeSH
- záchvaty MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Temporal lobe epilepsy (TLE) is the most prevalent type of epilepsy in adults; it often starts in infancy or early childhood. Although TLE is primarily considered to be a grey matter pathology, a growing body of evidence links this disease with white matter abnormalities. In this study, we explore the impact of TLE onset and progression in the immature brain on white matter integrity and development utilising the rat model of Li-pilocarpine-induced TLE at the 12th postnatal day (P). Diffusion tensor imaging (DTI) and Black-Gold II histology uncovered disruptions in major white matter tracks (corpus callosum, internal and external capsules, and deep cerebral white matter) spreading through the whole brain at P28. These abnormalities were mostly not present any longer at three months after TLE induction, with only limited abnormalities detectable in the external capsule and deep cerebral white matter. Relaxation Along a Fictitious Field in the rotating frame of rank 4 indicated that white matter changes observed at both timepoints, P28 and P72, are consistent with decreased myelin content. The animals affected by TLE-induced white matter abnormalities exhibited increased functional connectivity between the thalamus and medial prefrontal and somatosensory cortex in adulthood. Furthermore, histological analyses of additional animal groups at P15 and P18 showed only mild changes in white matter integrity, suggesting a gradual age-dependent impact of TLE progression. Taken together, TLE progression in the immature brain distorts white matter development with a peak around postnatal day 28, followed by substantial recovery in adulthood. This developmental delay might give rise to cognitive and behavioural comorbidities typical for early-onset TLE.
- Klíčová slova
- Animal model, Histology, MRI, Myelin development, Status Epilepticus, Temporal Lobe Epilepsy, Thalamocortical connectivity, White matter integrity,
- MeSH
- bílá hmota * diagnostické zobrazování patologie MeSH
- dospělí MeSH
- epilepsie temporálního laloku * patologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- myelinová pochva patologie MeSH
- předškolní dítě MeSH
- status epilepticus * chemicky indukované patologie MeSH
- zobrazování difuzních tenzorů MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- předškolní dítě MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Temporal lobe epilepsy (TLE) is the most common epilepsy type. TLE onset in infancy aggravates features like severity, drug responsiveness, or development of comorbidities. These aggravations may arise from altered micro RNA (miRNA) expression specific to the early onset of the disease. Although the miRNA involvement in TLE is widely studied, the relationship between the onset-age and miRNA expression has not been addressed. Here, we investigated the miRNA profile of infantile and adult-onset TLE in rats combining sequencing and PCR. Since miRNA expression changes with the disease progression, we scrutinized miRNA dynamics across three stages: acute, latent, and chronic. We report that infantile-onset TLE leads to changes in the expression of fewer miRNAs across these stages. Interestingly, the miRNA profile in the acute stage of infantile-onset TLE overlaps in dysregulation of miR-132-5p, -205, and -211-3p with the chronic stage of the disease starting in adulthood. The analysis of putative targets linked the majority of dysregulated miRNAs with pathways involved in epilepsy. Our profiling uncovered miRNA expression characteristic for infantile and adulthood-onset epileptogenesis, suggesting the distinct biology underlying TLE in the onset age-dependent matter. Our results indicate the necessity of addressing the onset age as an important parameter in future epilepsy research.
- MeSH
- biologické modely MeSH
- dospělí MeSH
- epilepsie temporálního laloku etiologie metabolismus MeSH
- hipokampus metabolismus MeSH
- kojenec MeSH
- krysa rodu Rattus MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- mikro RNA metabolismus MeSH
- potkani Wistar MeSH
- regulace genové exprese MeSH
- status epilepticus metabolismus MeSH
- transkriptom MeSH
- věk při počátku nemoci MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- kojenec MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
BACKGROUND: Tuberous sclerosis complex (TSC), a multi-system genetic disorder often associated with autism spectrum disorder (ASD), is caused by mutations of TSC1 or TSC2, which lead to constitutive overactivation of mammalian target of rapamycin (mTOR). In several Tsc1+/- and Tsc2+/- animal models, cognitive and social behavior deficits were reversed by mTOR inhibitors. However, phase II studies have not shown amelioration of ASD and cognitive deficits in individuals with TSC during mTOR inhibitor therapy. We asked here if developmental epilepsy, common in the majority of individuals with TSC but absent in most animal models, could explain the discrepancy. METHODS: At postnatal day P12, developmental status epilepticus (DSE) was induced in male Tsc2+/- (Eker) and wild-type rats, establishing four experimental groups including controls. In adult animals (n = 36), the behavior was assessed in the paradigms of social interaction test, elevated plus-maze, light-dark test, Y-maze, and novel object recognition. The testing was carried out before medication (T1), during a 2-week treatment with the mTOR inhibitor everolimus (T2) and after an 8-week washing-out (T3). Electroencephalographic (EEG) activity was recorded in a separate set of animals (n = 18). RESULTS: Both Tsc2+/- mutation and DSE caused social behavior deficits and epileptiform EEG abnormalities (T1). Everolimus led to a persistent improvement of the social deficit induced by Tsc2+/-, while deficits related to DSE did not respond to everolimus (T2, T3). CONCLUSIONS: These findings may contribute to an explanation why ASD symptoms in individuals with TSC, where comorbid early-onset epilepsy is common, were not reliably ameliorated by mTOR inhibitors in clinical studies.
- Klíčová slova
- Autism spectrum disorders, Developmental status epilepticus, Everolimus, TSC, Tuberous sclerosis complex, mTOR,
- MeSH
- autistická porucha * MeSH
- haploinsuficience MeSH
- krysa rodu Rattus MeSH
- status epilepticus * MeSH
- TOR serin-threoninkinasy genetika MeSH
- tuberin genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mTOR protein, rat MeSH Prohlížeč
- TOR serin-threoninkinasy MeSH
- Tsc2 protein, rat MeSH Prohlížeč
- tuberin MeSH
Temporal lobe epilepsy (TLE) is a severe neurological disorder accompanied by recurrent spontaneous seizures. Although the knowledge of TLE onset is still incomplete, TLE pathogenesis most likely involves the aberrant expression of microRNAs (miRNAs). miRNAs play an essential role in organism homeostasis and are widely studied in TLE as potential therapeutics and biomarkers. However, many discrepancies in discovered miRNAs occur among TLE studies due to model-specific miRNA expression, different onset ages of epilepsy among patients, or technology-related bias. We employed a massive parallel sequencing approach to analyze brain tissues from 16 adult mesial TLE (mTLE)/hippocampal sclerosis (HS) patients, 8 controls and 20 rats with TLE-like syndrome, and 20 controls using the same workflow and categorized these subjects based on the age of epilepsy onset. All categories were compared to discover overlapping miRNAs with an aberrant expression, which could be involved in TLE. Our cross-comparative analyses showed distinct miRNA profiles across the age of epilepsy onset and found that the miRNA profile in rats with adult-onset TLE shows the closest resemblance to the profile in mTLE/HS patients. Additionally, this analysis revealed overlapping miRNAs between patients and the rat model, which should participate in epileptogenesis and ictogenesis. Among the overlapping miRNAs stand out miR-142-5p and miR-142-3p, which regulate immunomodulatory agents with pro-convulsive effects and suppress neuronal growth. Our cross-comparison study enhanced the insight into the effect of the age of epilepsy onset on miRNA expression and deepened the knowledge of epileptogenesis. We employed the same methodological workflow in both patients and the rat model, thus improving the reliability and accuracy of our results.
- Klíčová slova
- animal model, cross-comparison study, human, mesial temporal lobe epilepsy, miRNA, sequencing,
- Publikační typ
- časopisecké články MeSH
The presence of oxidative stress in immature brain has been demonstrated during the acute phase of status epilepticus (SE). The knowledge regarding the long periods of survival after SE is not unequivocal, lacking direct evidence. To examine the presence and time profile of oxidative stress, its functional effect on mitochondria and the influence of an antioxidant treatment in immature rats during epileptogenesis, status epilepticus (SE) was induced in immature 12-day-old rats by Li-pilocarpine and at selected periods of the epileptogenesis; rat pups were subjected to examinations. Hydroethidine method was employed for detection of superoxide anion (O2.-), 3-nitrotyrosine (3-NT), and 4-hydroxynonenal (4-HNE) for oxidative damage of mitochondrial proteins and complex I activity for mitochondrial function. Natural polyphenolic antioxidant resveratrol was given in two schemes: "acute treatment," i.p. administration 30 min before, 30 and 60 min after induction of SE and "full treatment" when applications continued once daily for seven consecutive days (25 mg/kg each dose). The obtained results clearly document that the period of epileptogenesis studied (up to 4 weeks) in immature brain is associated with the significant enhanced production of O2.-, the increased levels of 3-NT and 4-HNE and the persisting deficiency of complex I activity. Application of resveratrol either completely prevented or significantly reduced markers both of oxidative stress and mitochondrial dysfunction. The findings suggest that targeting oxidative stress in combination with current antiepileptic therapies may provide a benefit in the treatment of epilepsy.
- Klíčová slova
- Epileptogenesis, Immature rats, Mitochondrial dysfunction, Oxidative stress, Protection, Resveratrol, Status epilepticus,
- MeSH
- analýza přežití MeSH
- biologické markery metabolismus MeSH
- chování zvířat účinky léků MeSH
- mitochondrie účinky léků metabolismus patologie MeSH
- mozek patologie MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar MeSH
- respirační komplex I metabolismus MeSH
- resveratrol farmakologie MeSH
- status epilepticus patologie MeSH
- superoxidy metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- respirační komplex I MeSH
- resveratrol MeSH
- superoxidy MeSH
Status epilepticus (SE), especially in immature animals, is known to produce recurrent spontaneous seizures and behavioral comorbidities later in life. The cause of these adverse long-term outcomes is unknown, but it has been hypothesized that free radicals produced by SE may play a role. We tested this hypothesis by treating immature (P25) rats with the free radical scavenger N-tert-butyl-α-phenylnitrone (PBN) at the time of lithium chloride (LiCl)/pilocarpine (PILO)-induced SE. Later, long-term outcomes were assessed. Cognitive impairment (spatial memory) was tested in the Morris water maze (MWM). Emotional disturbances were assessed by the capture test (aggressiveness) and elevated plus maze's (EPM) test (anxiety). Next, the presence and severity of spontaneous seizures were assessed by continuous video/EEG monitoring for 5 days. Finally, immunochemistry, stereology and morphology were used to assess the effects of PBN on hippocampal neuropathology and neurogenesis. PBN treatment modified the long-term effects of SE in varying ways, some beneficial and some detrimental. Beneficially, PBN protected against severe anatomical damage in the hippocampus and associated spatial memory impairment. Detrimentally, PBN treated animals had more severe seizures later in life. PBN also made animals more aggressive and more anxious. Correlating with these detrimental long-term outcomes, PBN significantly modified post-natal neurogenesis. Treated animals had significantly increased numbers of mature granule cells (GCs) ectopically located in the dentate hilus (DH). These results raise the possibility that abnormal neurogenesis may significantly contribute to the development of post-SE epilepsy and behavioral comorbidities.
- Klíčová slova
- adult neurogenesis, epilepsy, epileptic comorbidities, free radical scavenger, juvenile rats, neuroprotection,
- Publikační typ
- časopisecké články MeSH